{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.
Status:
US Approved Rx
(2016)
Source:
NDA206679
(2016)
Source URL:
First approved in 1991
Source:
NDA019766
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Simvastatin is a HMG-CoA Reductase Inhibitor that is FDA approved for the treatment of hypercholesterolemia and for the reduction in the risk of cardiac heart disease mortality and cardiovascular events. It reduces levels of "bad" cholesterol (low-density lipoprotein, or LDL) and triglycerides in the blood, while increasing levels of "good" cholesterol (high-density lipoprotein, or HDL). Common adverse reactions include abdominal pain, constipation, nausea, headache, upper respiratory infection. Cases of myopathy/rhabdomyolysis have been observed with simvastatin co-administered with lipid-modifying doses ( ≥ 1 g/day niacin) of niacin-containing products. The risk of myopathy, including rhabdomyolysis, is increased by concomitant administration of amiodarone, dronedarone, ranolazine, or calcium channel blockers such as verapamil, diltiazem, or amlodipine.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.