U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 44 results

Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Status:
Investigational
Source:
NCT02883751: Not Applicable Interventional Withdrawn Diabetes Mellitus
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
US Previously Marketed
Source:
Propoquin Dihydrochloride by Parke-Davis
(1966)
Source URL:
First approved in 1966
Source:
Propoquin Dihydrochloride by Parke-Davis
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Amopyroquine, a Mannich base derivative of 4-aminoquinolines, is an antimalarial agent. Amopyroquine was found to be effective against chloroquine-resistant strains of Plasmodium falciparum in Central Africa and was being reintroduced in that continent for intramuscular treatment of malaria. Although available since the 1960s for parenteral treatment of malaria, amopyroquine never won wide acceptance due to its higher cost and the high efficacy of chloroquine in the past. Amopyroquine was in a trial of the treatment of chronic discoid lupus erythematosus.
Status:
Possibly Marketed Outside US
Source:
NCT00119145: Phase 4 Interventional Completed Malaria
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Chlorproguanil is a biguanide. Chlorproguanil is active against P. falciparum and P. malariae. Chlorproguanil acts by inhibition of dihydrofolate reductase after cytochrome P450-catalysed cyclization. Chlorproguanil combined with dapsone was developing for the treatment of falciparum malaria. The anti-malarial combination chloroproguanil and dapsone has been withdrawn following demonstration of post-treatment haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD) deficient patients in a phase III clinical trial.
Status:
Possibly Marketed Outside US
Source:
NCT00119145: Phase 4 Interventional Completed Malaria
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Chlorproguanil is a biguanide. Chlorproguanil is active against P. falciparum and P. malariae. Chlorproguanil acts by inhibition of dihydrofolate reductase after cytochrome P450-catalysed cyclization. Chlorproguanil combined with dapsone was developing for the treatment of falciparum malaria. The anti-malarial combination chloroproguanil and dapsone has been withdrawn following demonstration of post-treatment haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD) deficient patients in a phase III clinical trial.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Pyronaridine was developed in China and has been registered in that country since the 1980s. Outside China, none of the existing formulations is registered because of the failure to meet international regulatory standards. Pyronaridine is generally active against chloroquine-resistant parasites. Pyronaridine has been investigated for the treatment of Malaria. Pyronaridine targets hematin. Combination of pyronaridine with artesunate was indicated for the blood-stage treatment of both strains of malaria:  P. falciparum and P. vivax.  WHO currently recommends artesunate-pyronaridine in areas where other artemisinin-based combination therapies are failing.

Showing 31 - 40 of 44 results