U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 221 - 230 of 462 results

Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Tenivastatin (well known as simvastatin acid or simvastatin hydroxy acid) is a pharmacologically active metabolite, which is formed in the mammalian organism from lactone prodrug, simvastatin. Tenivastatin is a potent reversible inhibitor of HMGCR (HMG-CoA reductase), reduces cholesterol synthesis and increases low-density lipoprotein (LDL) receptors on cell membranes of liver and extrahepatic tissues. It is also a substrate of organic anion transporting polypeptide 1B1 (OATP1B1/Oatp2), an influx transporter expressed on the sinusoidal membrane of hepatocytes. Recent studies have shown that OATP1B1 plays a clinically important role in the hepatic elimination of several drugs including statins, via mediating the hepatic uptake. In addition, was discovered, that the tenivastatin was a substrate of another transporter protein, human organic anion transporting polypeptide 3A1 (OATP3A1), which is predominately expressed in the heart. Presence of OATP3A1 in cardiomyocytes suggested that transporter could modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in the uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Benazepril is a prodrug which is metabolized by the liver into its active form benazeprilat via cleavage of the drug's ester group. Benazepril and Benazeprilat inhibit angiotensin-converting enzyme (ACE) in human subjects and animals. Benazeprilat has much greater ACE inhibitory activity than does Benazepril. It is indicated for the treatment of hypertension. It may be used alone or in combination with thiazide diuretics. Adverse reactions reported in controlled clinical trials and rarer events seen in post-marketing experience, include the following: Stevens-Johnson syndrome, pemphigus, apparent hypersensitivity reactions (manifested by dermatitis, pruritus, or rash), photosensitivity, and flushing, nausea, pancreatitis, constipation, gastritis, vomiting, and melena, thrombocytopenia and hemolytic anemia, anxiety, decreased libido, hypertonia, insomnia, nervousness, and paresthesia. Patients on diuretics, especially those in whom diuretic therapy was recently instituted, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with Benazepril. Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors (including benazepril) during therapy with lithium.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Benazepril is a prodrug which is metabolized by the liver into its active form benazeprilat via cleavage of the drug's ester group. Benazepril and Benazeprilat inhibit angiotensin-converting enzyme (ACE) in human subjects and animals. Benazeprilat has much greater ACE inhibitory activity than does Benazepril. It is indicated for the treatment of hypertension. It may be used alone or in combination with thiazide diuretics. Adverse reactions reported in controlled clinical trials and rarer events seen in post-marketing experience, include the following: Stevens-Johnson syndrome, pemphigus, apparent hypersensitivity reactions (manifested by dermatitis, pruritus, or rash), photosensitivity, and flushing, nausea, pancreatitis, constipation, gastritis, vomiting, and melena, thrombocytopenia and hemolytic anemia, anxiety, decreased libido, hypertonia, insomnia, nervousness, and paresthesia. Patients on diuretics, especially those in whom diuretic therapy was recently instituted, may occasionally experience an excessive reduction of blood pressure after initiation of therapy with Benazepril. Increased serum lithium levels and symptoms of lithium toxicity have been reported in patients receiving ACE inhibitors (including benazepril) during therapy with lithium.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Tenivastatin (well known as simvastatin acid or simvastatin hydroxy acid) is a pharmacologically active metabolite, which is formed in the mammalian organism from lactone prodrug, simvastatin. Tenivastatin is a potent reversible inhibitor of HMGCR (HMG-CoA reductase), reduces cholesterol synthesis and increases low-density lipoprotein (LDL) receptors on cell membranes of liver and extrahepatic tissues. It is also a substrate of organic anion transporting polypeptide 1B1 (OATP1B1/Oatp2), an influx transporter expressed on the sinusoidal membrane of hepatocytes. Recent studies have shown that OATP1B1 plays a clinically important role in the hepatic elimination of several drugs including statins, via mediating the hepatic uptake. In addition, was discovered, that the tenivastatin was a substrate of another transporter protein, human organic anion transporting polypeptide 3A1 (OATP3A1), which is predominately expressed in the heart. Presence of OATP3A1 in cardiomyocytes suggested that transporter could modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in the uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes.
Tenivastatin (well known as simvastatin acid or simvastatin hydroxy acid) is a pharmacologically active metabolite, which is formed in the mammalian organism from lactone prodrug, simvastatin. Tenivastatin is a potent reversible inhibitor of HMGCR (HMG-CoA reductase), reduces cholesterol synthesis and increases low-density lipoprotein (LDL) receptors on cell membranes of liver and extrahepatic tissues. It is also a substrate of organic anion transporting polypeptide 1B1 (OATP1B1/Oatp2), an influx transporter expressed on the sinusoidal membrane of hepatocytes. Recent studies have shown that OATP1B1 plays a clinically important role in the hepatic elimination of several drugs including statins, via mediating the hepatic uptake. In addition, was discovered, that the tenivastatin was a substrate of another transporter protein, human organic anion transporting polypeptide 3A1 (OATP3A1), which is predominately expressed in the heart. Presence of OATP3A1 in cardiomyocytes suggested that transporter could modulate the exposure of cardiac tissue to simvastatin acid due to its enrichment in cardiomyocytes. Increases in the uptake of simvastatin acid by OATP3A1 when combined with OATP substrates suggest the potential for drug-drug interactions that could influence clinical outcomes.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Azithromycin is one of the world's best-selling antibiotics, used to treat or prevent certain bacterial infections: Acute bacterial exacerbations of chronic bronchitis in adults; acute bacterial sinusitis in adults; uncomplicated skin and skin structure infections in adults; urethritis and cervicitis in adults; genital ulcer disease in men; acute otitis media in pediatric patients; community-acquired pneumonia in adults and pediatric patients; pharyngitis/tonsillitis in adults and pediatric patients. Azithromycin should not be used in patients with pneumonia who are judged inappropriate for oral therapy because of moderate to severe illness or risk factors. A team of researchers at the Croatian pharmaceutical company Pliva, discovered azithromycin in 1980. It was patented in 1981. In 1986, Pliva and Pfizer signed a licensing agreement, which gave Pfizer exclusive rights for the sale of azithromycin in Western Europe and the United States. Pliva put its azithromycin on the market in Central and Eastern Europe under the brand name of Sumamed in 1988. Pfizer launched azithromycin under Pliva's license in other markets under the brand name Zithromax in 1991. Azithromycin is a semi-synthetic macrolide antibiotic of the azalide class. Like other macrolide antibiotics, azithromycin inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of the bacterial 70S ribosome. Binding inhibits peptidyl transferase activity and interferes with amino acid translocation during the process of translation. Its effects may be bacteriostatic or bactericidal depending of the organism and the drug concentration. Its long half-life, which enables once daily dosing and shorter administration durations, is a property distinct from other macrolides.
Ramipril (sold under the brand name Altace ) is a prodrug belonging to the angiotensin-converting enzyme (ACE) inhibitors. It is metabolized to ramiprilat in the liver and, to a lesser extent, kidneys. Ramiprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Ramipril is indicated for the treatment of hypertension, to lower blood pressure; also used to reduce the risk of myocardial infarction, stroke, or death from cardiovascular causes; in addition, this drug is used to reduce the rate of death, myocardial infarction and stroke in individuals at high risk of cardiovascular events.

Showing 221 - 230 of 462 results