U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 71 - 80 of 237 results

Ornidazole is nitroimidazole derivative. It is an antiprotozoal drug that has proven to be effective against Trichomonas vaginalis, Entoamoeba histolytica, Giardia lamblia and Helicobacter pylori. The reduction of the nitro group and the generation of short-lived reactive intermediates are the basis of its parasiticidal activity. Ornidazole is a DNA-tropic drug with selective activity against microorganisms with enzyme systems capable of reducing the nitrogroup and catalyze the interaction between ferrodoxin proteins and nitrocompounds. After the drug penetrates the microbial cell, the mechanism of its action is based reducing the nitrogroup under the influence of the microorganism’s nitroreductases and the activity of the reduced nitroimidazole. The reduction products create compounds with DNA causing it to degrade, and disrupt the DNA replication and transcription processes. Furthermore, the drug’s metabolism products have cytotoxic properties and disrupt cellular respiration processes. It is indicated for the treatment of anaerobic systemic infections caused by ornidazole-sensitive microflora, prevention of infections caused by anaerobic bacteria, during operative treatment (especially middle and straight intestine surgeries), gynecological surgeries, severe intestinal ameobiasis, all extra-intestinal ameobiasis forms, giardiasis. Ornidazole was shown to be effective for the prevention of recurrence of Crohn's disease after ileocolonic resection.
Status:
Possibly Marketed Outside US
Source:
Unknown
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Hymecromone (4-methylumbelliferone) is already approved drug in Europe and Asia where it is used to treat biliary spasm. It is used as choleretic and antispasmodic drugs and as a standard for the fluorometric determination of enzyme activity. The concomitant administration of Hymecromone with products, containing metoclopramide, leads to mutual decrease of their action. Due to a danger of diarrhea with subsequent hypokalemia, Hymecromone should be applied with caution to patients on cardiac glycosides therapy (in these cases the sensitivity to them is increased). Hymecromone can be administered simultaneously with otherspasmolytics and analgesics. Very rare allergic reactions, itching, erythema, rashes; diarrhea which normally disappears by reduction of dose or discontinuance of therapy.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ibrexafungerp (BREXAFEMME®) is an orally active triterpenoid antifungal drug being developed by SCYNEXIS, Inc. for the treatment of fungal infections. The inhibition of β-1,3-D glucan synthetase by ibrexafungerp compromises the integrity of fungal cell walls. Ibrexafungerp has been recently approved for the treatment of vulvovaginal candidiasis (VVC), and it is the first novel antifungal drug class to be approved in more than 20 years. Food and Drug Administration's decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. Development for the treatment of recurrent VVC and invasive fungal infections is ongoing.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ibrexafungerp (BREXAFEMME®) is an orally active triterpenoid antifungal drug being developed by SCYNEXIS, Inc. for the treatment of fungal infections. The inhibition of β-1,3-D glucan synthetase by ibrexafungerp compromises the integrity of fungal cell walls. Ibrexafungerp has been recently approved for the treatment of vulvovaginal candidiasis (VVC), and it is the first novel antifungal drug class to be approved in more than 20 years. Food and Drug Administration's decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. Development for the treatment of recurrent VVC and invasive fungal infections is ongoing.
Naldemedine (Symproic) is an opioid antagonist indicated for the treatment of opioid-induced constipation (OIC) in adult patients with chronic non-cancer pain. Naldemedine is an opioid antagonist with binding affinities for mu-, delta-, and kappa-opioid receptors. Naldemedine functions as a peripherally-acting mu-opioid receptor antagonist in tissues such as the gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naldemedine is a derivative of naltrexone to which a side chain has been added that increases the molecular weight and the polar surface area, thereby reducing its ability to cross the blood-brain barrier (BBB). Naldemedine is also a substrate of the P-glycoprotein (P-gp) efflux transporter. Based on these properties, the CNS penetration of naldemedine is expected to be negligible at the recommended dose levels, limiting the potential for interference with centrally-mediated opioid analgesia. Naldemedine was approved in 2017 in both the US and Japan for the treatment of Opioid-induced Constipation.
Cobimetinib is an orally active, potent and highly selective small molecule inhibiting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK signal transduction pathway. It has been approved in Switzerland and the US, in combination with vemurafenib for the treatment of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma. Preclinical studies have demonstrated that Cobimetinib is effective in inhibiting the growth of tumor cells bearing a BRAF mutation, which has been found to be associated with many tumor types. A threonine-tyrosine kinase and a key component of the RAS/RAF/MEK/ERK signalling pathway that is frequently activated in human tumors, MEK1 is required for the transmission of growth-promoting signals from numerous receptor tyrosine kinases. Cobimetinib is used in combination with vemurafenib because the clinical benefit of a BRAF inhibitor is limited by intrinsic and acquired resistance. Reactivation of the MAPK pathway is a major contributor to treatment failure in BRAF-mutant melanomas, approximately ~80% of melanoma tumors becomes BRAF-inhibitor resistant due to reactivation of MAPK signalling. BRAF-inhibitor resistant tumor cells are sensitive to MEK inhibition, therefore cobimetinib and vemurafenib will result in dual inhibition of BRAF and its downstream target, MEK. Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib and vemurafenib target two different kinases in the RAS/RAF/MEK/ERK pathway. Cobimetinib is used for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. Cobimetinib is used in combination with vemurafenib, a BRAF inhibitor. Cobimetinib is marketed under the trade name Cotellic.
Status:
First approved in 2014
Source:
Prasterone by Health Science Funding, LLC
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dehydroepiandrosterone (INTRAROSA™, prasterone) is a major C19 steroid produced from cholesterol by the adrenal cortex. It is also produced in small quantities in the testis and the ovary. Dehydroepiandrosterone (INTRAROSA, prasterone) is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It indicated for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause. The mechanism of action of dehydroepiandrosterone (INTRAROSA, prasterone) in postmenopausal women with vulvar and vaginal atrophy is not fully established.
Status:
First approved in 2014
Source:
Prasterone by Health Science Funding, LLC
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dehydroepiandrosterone (INTRAROSA™, prasterone) is a major C19 steroid produced from cholesterol by the adrenal cortex. It is also produced in small quantities in the testis and the ovary. Dehydroepiandrosterone (INTRAROSA, prasterone) is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It indicated for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause. The mechanism of action of dehydroepiandrosterone (INTRAROSA, prasterone) in postmenopausal women with vulvar and vaginal atrophy is not fully established.
Status:
First approved in 2014
Source:
Prasterone by Health Science Funding, LLC
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dehydroepiandrosterone (INTRAROSA™, prasterone) is a major C19 steroid produced from cholesterol by the adrenal cortex. It is also produced in small quantities in the testis and the ovary. Dehydroepiandrosterone (INTRAROSA, prasterone) is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It indicated for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause. The mechanism of action of dehydroepiandrosterone (INTRAROSA, prasterone) in postmenopausal women with vulvar and vaginal atrophy is not fully established.
Status:
First approved in 2014
Source:
Prasterone by Health Science Funding, LLC
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dehydroepiandrosterone (INTRAROSA™, prasterone) is a major C19 steroid produced from cholesterol by the adrenal cortex. It is also produced in small quantities in the testis and the ovary. Dehydroepiandrosterone (INTRAROSA, prasterone) is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It indicated for the treatment of moderate to severe dyspareunia, a symptom of vulvar and vaginal atrophy, due to menopause. The mechanism of action of dehydroepiandrosterone (INTRAROSA, prasterone) in postmenopausal women with vulvar and vaginal atrophy is not fully established.