{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2004)
Source:
ANDA076789
(2004)
Source URL:
First approved in 1984
Source:
NDA018612
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Nicotine is a natural alkaloid obtained from the dried leaves and stems of the nightshade family of pants, such as Nicotiana tabacum and Nicotiana rustica, where it occurs in concentrations of 0.5-8%. Cigarette tobacco varies in its nicotine content, but common blends contain 15-25 mg per cigarette, with a current trend towards lower levels. Nicotine is highly addictive substance, it exhibits a stimulant effect when adsorbed at 2 mg. Administration of higher doses could be harmful. Action of nicotine is mediated by nicotinic cholinergic receptors. Nicotine binds to the interface between two subunits of the receptors, opens the channel and allows the entry of sodium or calcium. The principal mediator of nicotine dependence is α4β2 nicotine receptor.
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(1997)
Source:
NDA020676
(1997)
Source URL:
First approved in 1983
Source:
TZ-3 by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Tioconazole is an antifungal medication of the imidazole class used to treat infections caused by a fungus or yeast. Tioconazole is a broad-spectrum imidazole antifungal agent that inhibits the growth of human pathogenic yeasts. Tioconazole exhibits fungicidal activity in vitro against Candida albicans, other species of the genus Candida, and against Torulopsis glabrata. Tioconazole prevents the growth and function of some fungal organisms by interfering with the production of substances needed to preserve the cell membrane. This drug is effective only for infections caused by fungal organisms. Tioconazole interacts with 14-α demethylase, a cytochrome P-450 enzyme that converts lanosterol to ergosterol, an essential component of the yeast membrane. In this way, tioconazole inhibits ergosterol synthesis, resulting in increased cellular permeability. Tioconazole may also inhibit endogenous respiration, interact with membrane phospholipids, inhibit the transformation of yeasts to mycelial forms and the uptake of purine, impair triglyceride and/or phospholipid biosynthesis, and inhibit the movement of calcium and potassium ions across the cell membrane by blocking the ion transport pathway known as the Gardos channel. Side effects (for the women's formulas) may include temporary burning/irritation of the vaginal area, moderate drowsiness, headache similar to a sinus headache, hives, and upper respiratory infection.
Status:
US Approved Rx
(1998)
Source:
ANDA074983
(1998)
Source URL:
First approved in 1983
Source:
VEPESID by CORDEN PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Status:
US Approved Rx
(2010)
Source:
ANDA090248
(2010)
Source URL:
First approved in 1981
Source:
NDA018276
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Alprazolam, a benzodiazepine, is used to treat panic disorder and anxiety disorder. Unlike chlordiazepoxide, clorazepate, and prazepam, alprazolam has a shorter half-life and metabolites with minimal activity. Alprazolam may have significant drug interactions involving the hepatic cytochrome P-450 3A4 isoenzyme. Clinically, all benzodiazepines cause a dose-related central nervous system depressant activity varying from mild impairment of task performance to hypnosis. Unlike other benzodiazepines, alprazolam may also have some antidepressant activity, although clinical evidence of this is lacking. CNS agents of the 1,4 benzodiazepine class presumably exert their effects by binding at stereo specific receptors at several sites within the central nervous system. Their exact mechanism of action is unknown. Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Status:
US Approved Rx
(2016)
Source:
ANDA208127
(2016)
Source URL:
First approved in 1979
Source:
SURMONTIL by ODYSSEY PHARMS
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Trimipramine is a tricyclic antidepressant similar to imipramine, but with more antihistaminic and sedative properties. It was sold under brand name surmontil for the relief of symptoms of depression. Endogenous depression is more likely to be alleviated than other depressive states. In studies with neurotic outpatients, the drug appeared to be equivalent to amitriptyline in the less-depressed patients but somewhat less effective than amitriptyline in the more severely depressed patients. In hospitalized depressed patients, trimipramine and imipramine were equally effective in relieving depression. Trimipramine has been reported to differ from other typical tricyclic antidepressant drugs in several aspects, for instance it does not inhibit neuronal transmitter uptake and does not cause down-regulation of beta-adrenoceptors. Moreover, it may possess antipsychotic activity in schizophrenic patients. In addition, was found that it did not antagonize the inhibitory effect of noradrenaline and 5-hydroxytryptamine on the release of transmitter, mediated by presynaptic auto receptors. In radioligand binding studies, trimipramine showed fairly high affinities for some dopamine (DA), noradrenaline and 5-hydroxytryptamine (5-HT) receptor subtypes (5-HT2 receptors = alpha 1A/B-adrenoceptors greater than or equal to D2 receptors), intermediate affinities for D1 receptors, alpha 2B-adrenoceptors and 5-HT1C receptors but only low affinities for alpha 2A-adrenoceptors, 5-HT1A, 5-HT1D and 5-HT3 receptors. It may thus be classified as an atypical neuroleptic drug.
Status:
US Approved Rx
(2016)
Source:
ANDA208127
(2016)
Source URL:
First approved in 1979
Source:
SURMONTIL by ODYSSEY PHARMS
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Trimipramine is a tricyclic antidepressant similar to imipramine, but with more antihistaminic and sedative properties. It was sold under brand name surmontil for the relief of symptoms of depression. Endogenous depression is more likely to be alleviated than other depressive states. In studies with neurotic outpatients, the drug appeared to be equivalent to amitriptyline in the less-depressed patients but somewhat less effective than amitriptyline in the more severely depressed patients. In hospitalized depressed patients, trimipramine and imipramine were equally effective in relieving depression. Trimipramine has been reported to differ from other typical tricyclic antidepressant drugs in several aspects, for instance it does not inhibit neuronal transmitter uptake and does not cause down-regulation of beta-adrenoceptors. Moreover, it may possess antipsychotic activity in schizophrenic patients. In addition, was found that it did not antagonize the inhibitory effect of noradrenaline and 5-hydroxytryptamine on the release of transmitter, mediated by presynaptic auto receptors. In radioligand binding studies, trimipramine showed fairly high affinities for some dopamine (DA), noradrenaline and 5-hydroxytryptamine (5-HT) receptor subtypes (5-HT2 receptors = alpha 1A/B-adrenoceptors greater than or equal to D2 receptors), intermediate affinities for D1 receptors, alpha 2B-adrenoceptors and 5-HT1C receptors but only low affinities for alpha 2A-adrenoceptors, 5-HT1A, 5-HT1D and 5-HT3 receptors. It may thus be classified as an atypical neuroleptic drug.
Status:
US Approved Rx
(2016)
Source:
ANDA208127
(2016)
Source URL:
First approved in 1979
Source:
SURMONTIL by ODYSSEY PHARMS
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Trimipramine is a tricyclic antidepressant similar to imipramine, but with more antihistaminic and sedative properties. It was sold under brand name surmontil for the relief of symptoms of depression. Endogenous depression is more likely to be alleviated than other depressive states. In studies with neurotic outpatients, the drug appeared to be equivalent to amitriptyline in the less-depressed patients but somewhat less effective than amitriptyline in the more severely depressed patients. In hospitalized depressed patients, trimipramine and imipramine were equally effective in relieving depression. Trimipramine has been reported to differ from other typical tricyclic antidepressant drugs in several aspects, for instance it does not inhibit neuronal transmitter uptake and does not cause down-regulation of beta-adrenoceptors. Moreover, it may possess antipsychotic activity in schizophrenic patients. In addition, was found that it did not antagonize the inhibitory effect of noradrenaline and 5-hydroxytryptamine on the release of transmitter, mediated by presynaptic auto receptors. In radioligand binding studies, trimipramine showed fairly high affinities for some dopamine (DA), noradrenaline and 5-hydroxytryptamine (5-HT) receptor subtypes (5-HT2 receptors = alpha 1A/B-adrenoceptors greater than or equal to D2 receptors), intermediate affinities for D1 receptors, alpha 2B-adrenoceptors and 5-HT1C receptors but only low affinities for alpha 2A-adrenoceptors, 5-HT1A, 5-HT1D and 5-HT3 receptors. It may thus be classified as an atypical neuroleptic drug.
Status:
US Approved Rx
(2016)
Source:
ANDA208127
(2016)
Source URL:
First approved in 1979
Source:
SURMONTIL by ODYSSEY PHARMS
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Conditions:
Trimipramine is a tricyclic antidepressant similar to imipramine, but with more antihistaminic and sedative properties. It was sold under brand name surmontil for the relief of symptoms of depression. Endogenous depression is more likely to be alleviated than other depressive states. In studies with neurotic outpatients, the drug appeared to be equivalent to amitriptyline in the less-depressed patients but somewhat less effective than amitriptyline in the more severely depressed patients. In hospitalized depressed patients, trimipramine and imipramine were equally effective in relieving depression. Trimipramine has been reported to differ from other typical tricyclic antidepressant drugs in several aspects, for instance it does not inhibit neuronal transmitter uptake and does not cause down-regulation of beta-adrenoceptors. Moreover, it may possess antipsychotic activity in schizophrenic patients. In addition, was found that it did not antagonize the inhibitory effect of noradrenaline and 5-hydroxytryptamine on the release of transmitter, mediated by presynaptic auto receptors. In radioligand binding studies, trimipramine showed fairly high affinities for some dopamine (DA), noradrenaline and 5-hydroxytryptamine (5-HT) receptor subtypes (5-HT2 receptors = alpha 1A/B-adrenoceptors greater than or equal to D2 receptors), intermediate affinities for D1 receptors, alpha 2B-adrenoceptors and 5-HT1C receptors but only low affinities for alpha 2A-adrenoceptors, 5-HT1A, 5-HT1D and 5-HT3 receptors. It may thus be classified as an atypical neuroleptic drug.
Status:
US Approved Rx
(2016)
Source:
ANDA208127
(2016)
Source URL:
First approved in 1979
Source:
SURMONTIL by ODYSSEY PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Trimipramine is a tricyclic antidepressant similar to imipramine, but with more antihistaminic and sedative properties. It was sold under brand name surmontil for the relief of symptoms of depression. Endogenous depression is more likely to be alleviated than other depressive states. In studies with neurotic outpatients, the drug appeared to be equivalent to amitriptyline in the less-depressed patients but somewhat less effective than amitriptyline in the more severely depressed patients. In hospitalized depressed patients, trimipramine and imipramine were equally effective in relieving depression. Trimipramine has been reported to differ from other typical tricyclic antidepressant drugs in several aspects, for instance it does not inhibit neuronal transmitter uptake and does not cause down-regulation of beta-adrenoceptors. Moreover, it may possess antipsychotic activity in schizophrenic patients. In addition, was found that it did not antagonize the inhibitory effect of noradrenaline and 5-hydroxytryptamine on the release of transmitter, mediated by presynaptic auto receptors. In radioligand binding studies, trimipramine showed fairly high affinities for some dopamine (DA), noradrenaline and 5-hydroxytryptamine (5-HT) receptor subtypes (5-HT2 receptors = alpha 1A/B-adrenoceptors greater than or equal to D2 receptors), intermediate affinities for D1 receptors, alpha 2B-adrenoceptors and 5-HT1C receptors but only low affinities for alpha 2A-adrenoceptors, 5-HT1A, 5-HT1D and 5-HT3 receptors. It may thus be classified as an atypical neuroleptic drug.