U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 531 - 540 of 1119 results

TELAVANCIN (VIBATIV®) is a lipoglycopeptide antibacterial that is a synthetic derivative of vancomycin. It exerts concentration-dependent, bactericidal activity against Gram-positive organisms in vitro. TELAVANCIN (VIBATIV®) inhibits cell wall biosynthesis by binding to late-stage peptidoglycan precursors, including lipid II. It also binds to the bacterial membrane and disrupts membrane barrier function. TELAVANCIN (VIBATIV®) is indicated for the treatment of adult patients with complicated skin and skin structure infections caused by susceptible isolates of the following Gram-positive microorganisms: Staphylococcus aureus (including methicillin-susceptible and -resistant isolates), Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus anginosus group (includes S. anginosus, S. intermedius, and S. constellatus), or Enterococcus faecalis (vancomycin-susceptible isolates only). It is also indicated for the treatment of adult patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP), caused by susceptible isolates of Staphylococcus aureus (both methicillin-susceptible and -resistant isolates). It should be reserved for use when alternative treatments are not suitable.
Dextromilnacipran (1R, 2S/F2696) is an enantiomer of milnacipran, a serotonin/norepinephrine (5-HT/NE) reuptake inhibitor. Dextromilnacipran is pharmacologically less active as compared with racemic mixture and levomilnacipran (1S, 2R/F2695).

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pitavastatin is a new synthetic 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMG-CoA reductase) inhibitor, which was developed, and has been available in Japan since July 2003. Metabolism of pitavastatin by the cytochrome P450 (CYP) system is minimal, principally through CYP 2C9, with little involvement of the CYP 3A4 isoenzyme, potentially reducing the risk of drug-drug interactions between pitavastatin and other drugs known to inhibit CYP enzymes. To date, human and animal studies have shown pitavastatin to be potentially as effective in lowering LDL-cholesterol levels as rosuvastatin. Pitavastatin under the trade name Livalo is indicated as an adjunctive therapy to diet to reduce elevated total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo B), triglycerides (TG), and to increase HDL-C in adult patients with primary hyperlipidemia or mixed dyslipidemia. Pitavastatin competitively inhibits HMG-CoA reductase, which is a rate-determining enzyme involved with biosynthesis of cholesterol, in a manner of competition with the substrate so that it inhibits cholesterol synthesis in the liver. As a result, the expression of LDL-receptors followed by the uptake of LDL from blood to liver is accelerated and then the plasma TC decreases. Further, the sustained inhibition of cholesterol synthesis in the liver decreases levels of very low density lipoproteins. Common statin-related side effects (headaches, stomach upset, abnormal liver function tests and muscle cramps) were similar to other statins.
Tapentadol is the first US FDA-approved centrally acting analgesic having both μ-opioid receptor agonist and noradrenaline (norepinephrine) reuptake inhibition activity with minimal serotonin reuptake inhibition. Tapentadol is indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate, neuropathic pain associated with diabetic peripheral neuropathy (DPN) severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate.
Tapentadol is the first US FDA-approved centrally acting analgesic having both μ-opioid receptor agonist and noradrenaline (norepinephrine) reuptake inhibition activity with minimal serotonin reuptake inhibition. Tapentadol is indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate, neuropathic pain associated with diabetic peripheral neuropathy (DPN) severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate.
Tapentadol is the first US FDA-approved centrally acting analgesic having both μ-opioid receptor agonist and noradrenaline (norepinephrine) reuptake inhibition activity with minimal serotonin reuptake inhibition. Tapentadol is indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate, neuropathic pain associated with diabetic peripheral neuropathy (DPN) severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate.
Tapentadol is the first US FDA-approved centrally acting analgesic having both μ-opioid receptor agonist and noradrenaline (norepinephrine) reuptake inhibition activity with minimal serotonin reuptake inhibition. Tapentadol is indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate, neuropathic pain associated with diabetic peripheral neuropathy (DPN) severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate.
Tetrabenazine (trade name Xenazine) is a monoamine depleter and used as the symptomatic treatment of chorea associated with Huntington's disease. Tetrabenazine is a reversible human vesicular monoamine transporter type 2 inhibitor (Ki = 100 nM). It acts within the basal ganglia and promotes depletion of monoamine neurotransmitters serotonin, norepinephrine, and dopamine from stores. It also decreases uptake into synaptic vesicles. Dopamine is required for fine motor movement, so the inhibition of its transmission is efficacious for hyperkinetic movement. Tetrabenazine exhibits weak in vitro binding affinity at the dopamine D2 receptor. The most common adverse reactions, which have occurred in at least 10% of subjects in studies and at least 5% greater than in subjects who received placebo, have been: sedation or somnolence, fatigue, insomnia, depression, suicidal thoughts, akathisia, anxiety, and nausea.
Tetrabenazine (trade name Xenazine) is a monoamine depleter and used as the symptomatic treatment of chorea associated with Huntington's disease. Tetrabenazine is a reversible human vesicular monoamine transporter type 2 inhibitor (Ki = 100 nM). It acts within the basal ganglia and promotes depletion of monoamine neurotransmitters serotonin, norepinephrine, and dopamine from stores. It also decreases uptake into synaptic vesicles. Dopamine is required for fine motor movement, so the inhibition of its transmission is efficacious for hyperkinetic movement. Tetrabenazine exhibits weak in vitro binding affinity at the dopamine D2 receptor. The most common adverse reactions, which have occurred in at least 10% of subjects in studies and at least 5% greater than in subjects who received placebo, have been: sedation or somnolence, fatigue, insomnia, depression, suicidal thoughts, akathisia, anxiety, and nausea.