{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2022)
Source:
NDA208712
(2022)
Source URL:
First approved in 2022
Source:
NDA208712
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pacritinib (SB1518), discovered in Singapore at the labs of S*BIO Pte Ltd., is an oral tyrosine kinase inhibitor (TKI) with activity against two important activating mutations: Janus Associated Kinase 2 (JAK2) and FMS-like tyrosine kinase 3 (FLT3). The JAK family of enzymes is a central component in signal transduction pathways, which are critical to normal blood cell growth and development as well as inflammatory cytokine expression and immune responses. Activating mutations of JAK2 are implicated in certain blood-related cancers, including myeloproliferative neoplasms (MPNs), leukemia and certain solid tumors. FLT3 is a gene commonly found mutated in patients with acute myeloid leukemia (AML). Pacritinib has demonstrated encouraging results in Phase 1 and 2 studies for patients with myelofibrosis and may offer an advantage over other JAK inhibitors through effective treatment of symptoms while having less treatment-emergent thrombocytopenia and anemia than has been seen in currently approved and in-development JAK inhibitors. Pacritinib is acquired by Cell Therapeutics, Inc. (CTI) and Baxter international and could effectively address an unmet medical need for patients living with myelofibrosis who face treatment-emergent thrombocytopenia on marketed JAK inhibitors. Currently Pacritinib is undergoing preregistration for myelofibrosis.
Status:
US Approved Rx
(2018)
Source:
NDA210656
(2018)
Source URL:
First approved in 2018
Source:
NDA210656
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
PF-04449913 is a potent and selective inhibitor of the Hh signaling pathway through binding to the target, smoothened. PF-04449913 inhibits Hh signaling in vitro and has demonstrated significant antitumor activity in vivo. In the clinic, PF-04449913 is being evaluated both in hematological and solid malignancies, with a phase II trial currently underway in both fit and unfit patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). Treatment-related adverse-events were nausea, dizziness, somnolence, QT prolongation and pruritus. Based on pre-clinical assessments, CYP3A4 is believed to be primarily involved in the metabolism of PF-04449913 that is why PF-04449913 plasma exposures and peak concentrations were increased following concurrent administration of ketoconazole (CYP3A4 inhibitor).
Status:
US Approved Rx
(2018)
Source:
NDA210238
(2018)
Source URL:
First approved in 2018
Source:
NDA210238
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Avatrombopag is an orally bioavailable, small molecule thrombopoietin (TPO) receptor agonist that stimulates proliferation and differentiation of megakaryocytes from bone marrow progenitor cells resulting in increased production of platelets. Avatrombopag does not compete with TPO for binding to the TPO receptor and has an additive effect with TPO on platelet production. Avatrombopag was discovered by Yamanouchi Pharmaceutical, developed by AkaRx which late became acquired by Dova Pharmaceuticals. In 2018 avatrombopag was approved by the FDA for thrombocytopenia in adults with chronic liver disease scheduled to undergo a procedure.
Status:
US Approved Rx
(2023)
Source:
NDA216793
(2023)
Source URL:
First approved in 2017
Source:
ZEJULA by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Status:
US Approved Rx
(2013)
Source:
NDA201292
(2013)
Source URL:
First approved in 2013
Source:
NDA201292
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Afatinib is a anilino-quinazoline derivative and irreversible antagonist of the receptor tyrosine kinase epidermal growth factor receptor family, with antineoplastic activity. Afatinib selectively and covalently binds to and inhibits the epidermal growth factor receptors 1 (ErbB1; EGFR), 2 (ErbB2; HER2), and 4 (ErbB4; HER4), and certain EGFR mutants, including those caused by EGFR exon 19 deletion mutations or exon 21 (L858R) mutations. This may result in the inhibition of tumor growth and angiogenesis in tumor cells overexpressing these kinases. Additionally, afatinib inhibits the EGFR T790M gatekeeper mutation which is resistant to treatment with first-generation EGFR inhibitors. EGFR, HER2 and HER4 are RTKs that belong to the EGFR superfamily; they play major roles in both tumor cell proliferation and tumor vascularization and are overexpressed in many cancer cell types. Afatinib is a substrate and an inhibitor of P-gp and of the transporter BCRP. Co-administration of P-gp inhibitors can increase afatinib exposure while co-administration of chronic Pgp inducers can decrease afatinib exposure.
Status:
US Approved Rx
(2012)
Source:
NDA202276
(2012)
Source URL:
First approved in 2012
Source:
NDA202276
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Avanafil is a PDE5 inhibitor approved for erectile dysfunction by FDA and by EMA. Avanafil is known by the trademark names Stendra and Spedra and was developed by Vivus Inc. Avanafil selectively inhibits PDE5, thus inhibiting the degradation of cyclic guanosine monophosphate (cGMP) found in the smooth muscle of the corpus cavernosa of the penis. The physiologic mechanism of erection of the penis involves release of nitric oxide (NO) in the corpus cavernosum during sexual stimulation. NO then activates the enzyme guanylate cyclase, which results in increased levels of cGMP, producing smooth muscle relaxation in the corpus cavernosum and allowing inflow of blood. Avanafil has no direct relaxant effect on isolated human corpus cavernosum, but enhances the effect of NO by inhibiting PDE5, which is responsible for degradation of cGMP in the corpus cavernosum. Because sexual stimulation is required to initiate the local release of nitric oxide, the inhibition of PDE5 has noeffect in the absence of sexual stimulation. The advantage of avanafil is that it has very fast onset of action compared with other PDE5 inhibitors. It is absorbed quickly, reaching a maximum concentration in about 30–45 minutes. About two-thirds of the participants were able to engage in sexual activity within 15 minutes.
Status:
US Approved Rx
(2021)
Source:
NDA214358
(2021)
Source URL:
First approved in 2010
Source:
NDA022512
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Dabigatran (Pradaxa, Prazaxa) is an anticoagulant medication that can be taken by mouth. FDA approved on October 19, 2010. Dabigatran directly inhibits thrombin in a concentration-dependent, reversible, specific, and competitive manner which results in a prolongation of aPTT (partial thromboplastin time), ECT (Ecarin clotting time), and TT (thrombin time). It may increase INR but this laboratory parameter is relatively insensitive to the activity of dabigatran. Dabigatran is indicated for the prevention of venous thromboembolic events in patients who have undergone elective hip or knee replacement surgery (based on RE-NOVATE, RE-MODEL, and RE-MOBILIZE trials). In 2010, it was approved in the US and Canada for prevention of stroke and systemic embolism in patients with atrial fibrillation (approval based on the RE-LY trial). Contraindications: severe renal impairment (CrCL < 30 ml/min); haemorrhagic manifestations, bleeding diathesis or spontaneous or pharmacologic impairment of haemostasis; lesions at risk of clinically significant bleeding (e.g. extensive cerebral infarction (haemorrhagic or ischemic) in the last 6 months, active peptic ulcer disease); concomitant treatment with P-glycoprotein inhibitors (e.g. oral ketoconazole, verapamil); and those with known hypersensitivity to dabigatran, dabigatran etexilate or any ingredient used in the formulation or component of the container. As of December 2012, dabigatran is contraindicated in patients with mechanical prosthetic heart valves.
Status:
US Approved Rx
(2019)
Source:
ANDA210281
(2019)
Source URL:
First approved in 2004
Source:
NDA021518
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Solifenacin is a competitive muscarinic acetylcholine receptor antagonist. The binding of acetylcholine to these receptors, particularly the M3 receptor subtype, plays a critical role in the contraction of smooth muscle. By preventing the binding of acetylcholine to these receptors, solifenacin reduces smooth muscle tone in the bladder, allowing the bladder to retain larger volumes of urine. It is FDA approved for the treatment of overactive bladder with symptoms of urge urinary incontinence, urgency, and urinary frequency. Common adverse reactions include constipation, Xerostomia. Inhibitors of CYP3A4 may increase the concentration of Solifenacin. Vice versa, CYP3A4 Inducers decrease concentration.
Status:
US Approved Rx
(2007)
Source:
ANDA077670
(2007)
Source URL:
First approved in 1991
Source:
NDA019839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Sertraline (trade names Zoloft and others) is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class. Sertraline is primarily prescribed for major depressive disorder in adult outpatients as well as obsessive-compulsive disorder, panic disorder, and social anxiety disorder, in both adults and children. The exact mechanism of action sertraline is not fully known, but the drug appears to selectively inhibit the reuptake of serotonin at the presynaptic membrane. This results in an increased synaptic concentration of serotonin in the CNS, which leads to numerous functional changes associated with enhanced serotonergic neurotransmission. It is suggested that these modifications are responsible for the antidepressant action observed during long-term administration of antidepressants. It has also been hypothesized that obsessive-compulsive disorder is caused by the dysregulation of serotonin, as it is treated by sertraline, and the drug corrects this imbalance. Compared to other SSRIs, sertraline tends to be associated with a higher rate of psychiatric side effects and diarrhea. It tends to be more activating (that is, associated with a higher rate of anxiety, agitation, insomnia, etc.) than other SSRIs, aside from fluoxetine. Over a two-week treatment of healthy volunteers, sertraline slightly improved verbal fluency but did not affect word learning, short-term memory, vigilance, flicker fusion time, choice reaction time, memory span, or psychomotor coordination. In spite of lower subjective rating, that is, feeling that they performed worse, no clinically relevant differences were observed in the objective cognitive performance in a group of people treated for depression with sertraline for 1.5 years as compared to healthy controls
Status:
US Approved Rx
(2024)
Source:
ANDA217548
(2024)
Source URL:
First approved in 1988
Source:
CARDENE by CHIESI
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Nicardipine is a potent calcium channel blockader with marked vasodilator action used to treat high blood pressure and angina. By deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, nicardipine inhibits the influx of extracellular calcium across the myocardial and vascular smooth muscle cell membranes The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.