U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 381 - 390 of 420 results

Alatrofloxacin is a fluoroquinolone antibiotic developed as a mesylate salt and was sold under brand name Trovan, but was withdrawn from the U.S. market in 2001. Trovan was indicated for the treatment of patients initiating therapy in in-patient health care facilities (i.e., hospitals and long term nursing care facilities) with serious, life- or limb-threatening infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Nosocomial pneumonia caused by Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, or Staphylococcus aureus. Community acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus. Complicated intra-abdominal infections, including post-surgical infections caused by Escherichia coli. Gynecologic and pelvic infections including endomyometritis, parametritis, septic abortion and post-partum infections caused by Escherichia coli, Bacteroides fragilis, viridans group streptococci, Enterococcus faecalis. Complicated skin and skin structure infections, including diabetic foot infections, caused by Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, or Proteus mirabilis. After intravenous administration, alatrofloxacin is rapidly converted to trovafloxacin, which is responsible for therapeutic effect. Plasma concentrations of alatrofloxacin are below quantifiable levels within 5 to 10 minutes of completion of a 1 hour infusion.
Alatrofloxacin is a fluoroquinolone antibiotic developed as a mesylate salt and was sold under brand name Trovan, but was withdrawn from the U.S. market in 2001. Trovan was indicated for the treatment of patients initiating therapy in in-patient health care facilities (i.e., hospitals and long term nursing care facilities) with serious, life- or limb-threatening infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Nosocomial pneumonia caused by Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, or Staphylococcus aureus. Community acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus. Complicated intra-abdominal infections, including post-surgical infections caused by Escherichia coli. Gynecologic and pelvic infections including endomyometritis, parametritis, septic abortion and post-partum infections caused by Escherichia coli, Bacteroides fragilis, viridans group streptococci, Enterococcus faecalis. Complicated skin and skin structure infections, including diabetic foot infections, caused by Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, or Proteus mirabilis. After intravenous administration, alatrofloxacin is rapidly converted to trovafloxacin, which is responsible for therapeutic effect. Plasma concentrations of alatrofloxacin are below quantifiable levels within 5 to 10 minutes of completion of a 1 hour infusion.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Delavirdine is a nonnucleoside reverse transcriptase inhibitor (NNRTI). Delavirdine binds directly to reverse transcriptase (RT) and blocks RNA-dependent and DNA-dependent DNA polymerase activities. Delavirdine does not compete with template:primer or deoxynucleoside triphosphates. HIV-2 RT and human cellular DNA polymerases alfa, gamma, or delta are not inhibited by delavirdine. In addition, HIV-1 group O, a group of highly divergent strains that are uncommon in North America, may not be inhibited by delavirdine. Delavirdine is marketed under the trade name Rescriptor, indicated for the treatment of HIV-1 infection in combination with at least 2 other active antiretroviral agents when therapy is warranted. .
Trimetrexate, a second-generation folate antagonist which was used under brand name NEUTREXIN with concurrent leucovorin administration (leucovorin protection) was indicated as an alternative therapy for the treatment of moderate-to-severe Pneumocystis carinii pneumonia (PCP) in immunocompromised patients, including patients with the acquired immunodeficiency syndrome (AIDS). Nevertheless, this product was discontinued. In present time, trimetrexate with a different combinations is in the phase II of clinical trial for the treatment the following cancer diseases: pancreatic cancer and colorectal cancer (in combination with fluorouracil and leucovorin) and to treat a refractory acute leukemia in combination with leucovorin. Trimetrexate is a competitive inhibitor of dihydrofolate reductase (DHFR) from bacterial, protozoan, and mammalian sources. DHFR catalyzes the reduction of intracellular dihydrofolate to the active coenzyme tetrahydrofolate. Inhibition of DHFR results in the depletion of this coenzyme, leading directly to interference with thymidylate biosynthesis, as well as inhibition of folate-dependent formyltransferases, and indirectly to inhibition of purine biosynthesis. The result is disruption of DNA, RNA, and protein synthesis, with consequent cell death.
Trimetrexate, a second-generation folate antagonist which was used under brand name NEUTREXIN with concurrent leucovorin administration (leucovorin protection) was indicated as an alternative therapy for the treatment of moderate-to-severe Pneumocystis carinii pneumonia (PCP) in immunocompromised patients, including patients with the acquired immunodeficiency syndrome (AIDS). Nevertheless, this product was discontinued. In present time, trimetrexate with a different combinations is in the phase II of clinical trial for the treatment the following cancer diseases: pancreatic cancer and colorectal cancer (in combination with fluorouracil and leucovorin) and to treat a refractory acute leukemia in combination with leucovorin. Trimetrexate is a competitive inhibitor of dihydrofolate reductase (DHFR) from bacterial, protozoan, and mammalian sources. DHFR catalyzes the reduction of intracellular dihydrofolate to the active coenzyme tetrahydrofolate. Inhibition of DHFR results in the depletion of this coenzyme, leading directly to interference with thymidylate biosynthesis, as well as inhibition of folate-dependent formyltransferases, and indirectly to inhibition of purine biosynthesis. The result is disruption of DNA, RNA, and protein synthesis, with consequent cell death.
Trimetrexate, a second-generation folate antagonist which was used under brand name NEUTREXIN with concurrent leucovorin administration (leucovorin protection) was indicated as an alternative therapy for the treatment of moderate-to-severe Pneumocystis carinii pneumonia (PCP) in immunocompromised patients, including patients with the acquired immunodeficiency syndrome (AIDS). Nevertheless, this product was discontinued. In present time, trimetrexate with a different combinations is in the phase II of clinical trial for the treatment the following cancer diseases: pancreatic cancer and colorectal cancer (in combination with fluorouracil and leucovorin) and to treat a refractory acute leukemia in combination with leucovorin. Trimetrexate is a competitive inhibitor of dihydrofolate reductase (DHFR) from bacterial, protozoan, and mammalian sources. DHFR catalyzes the reduction of intracellular dihydrofolate to the active coenzyme tetrahydrofolate. Inhibition of DHFR results in the depletion of this coenzyme, leading directly to interference with thymidylate biosynthesis, as well as inhibition of folate-dependent formyltransferases, and indirectly to inhibition of purine biosynthesis. The result is disruption of DNA, RNA, and protein synthesis, with consequent cell death.
Trimetrexate, a second-generation folate antagonist which was used under brand name NEUTREXIN with concurrent leucovorin administration (leucovorin protection) was indicated as an alternative therapy for the treatment of moderate-to-severe Pneumocystis carinii pneumonia (PCP) in immunocompromised patients, including patients with the acquired immunodeficiency syndrome (AIDS). Nevertheless, this product was discontinued. In present time, trimetrexate with a different combinations is in the phase II of clinical trial for the treatment the following cancer diseases: pancreatic cancer and colorectal cancer (in combination with fluorouracil and leucovorin) and to treat a refractory acute leukemia in combination with leucovorin. Trimetrexate is a competitive inhibitor of dihydrofolate reductase (DHFR) from bacterial, protozoan, and mammalian sources. DHFR catalyzes the reduction of intracellular dihydrofolate to the active coenzyme tetrahydrofolate. Inhibition of DHFR results in the depletion of this coenzyme, leading directly to interference with thymidylate biosynthesis, as well as inhibition of folate-dependent formyltransferases, and indirectly to inhibition of purine biosynthesis. The result is disruption of DNA, RNA, and protein synthesis, with consequent cell death.
Status:
US Previously Marketed
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)



Benzquinamide also known as BZQ; Emete-con, Emetico, is an antiemetic drug, which was discontinued. That drug was used to prevent and treat nausea and vomiting associated with anesthesia and surgery, administered intramuscularly or intravenously. The mechanism of action is not known, but was made predictions which shown, that in spite of benzquinamide did bind to the α2A, α2B, and α2C adrenergic receptors (α2-AR). It was known, that this activity may partially explain the anxiolytic activity effect of the drug. But the dopamine D2 receptor, which by ligand-set similarity resembles α2-AR is an accepted target for emesis. Then benzquinamide was tested towards to the D2, D3, and D4 receptors. Notwithstanding the fact that the α2-AR values are lower than the D2 values, it was predicted, that D2 activity may be the most relevant for emesis.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.
Status:
US Previously Marketed
Source:
RONDOMYCIN by MEDPOINTE PHARM HLC
(1966)
Source URL:
First approved in 1966

Class (Stereo):
CHEMICAL (ABSOLUTE)



Methacycline is a tetracycline antibiotic. Similar to other tetracyclines, it has a wide spectrum of antimicrobial action. It is active against most Gram-positive bacteria (pneumococci, streptococci, staphylococci) and Gram-negative bacteria (E. coli, salmonella, shigella, etc.), and towards agents causing onithosis, psittacosis, trachoma, and some Protozoa. Like other tetracyclines, the general usefulness of methacycline has been reduced with the onset of bacterial resistance. Methacycline inhibits the binding of aminoacyl-tRNA to the mRNA-ribosome complex. Methacycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. Methacycline is mostly used for the treatment of acute bacterial exacerbations of chronic bronchitis.

Showing 381 - 390 of 420 results