U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1481 - 1490 of 2596 results

Angiotensin III (Ang III) is a bioactive heptapeptide that is formed from the degradation of the Angiotensin II peptide by aminopeptidase A. In peripheral Angiotensin systems, Angiotensin II is the main effector peptide in the systemic circulation, although exogenous Angiotensin III can be as potent as Angiotensin II in, for example, stimulating aldosterone secretion or inhibiting renin release. In the rat brain, Angiotensin III was found to be equipotent with Angiotensin II as a pressor agent or dipsogen and was bound as avidly to the nervous system as Angiotensin II. Angiotensin receptor subtype AT1 has the greater affinity towards Angiotensin II and is also responsive to Angiotensin III, while the AT2 receptor subtype appears to be more sensitive to Angiotensin III but less responsive to Angiotensin II. Angiotensin III enhances blood pressure, vasopressin release and thirst when it is centrally administrated. Angiotensin III infusion increases blood pressure in healthy volunteers and hypertensive patients as well as augments aldosterone release. Although Angiotensin III does not change renal function in humans, it induces natriuresis in AT, receptor-blocked rats likely by binding to AT2 receptors. In addition, in cultured renal cells, this peptide stimulates the expression of many growth factors, proinflammatory mediators, and extracellular matrix proteins.
BMN-673 (8R,9S) is the (8R,9S) enantiomer of BMN-673, known as talazoparib. BMN 673 is a novel inhibitor of nuclear enzyme poly (ADP-ribose) polymerase (PARP) with potential antineoplastic activity.
Tedizolid phosphate is an oxazolidinone prodrug which in the body is dephosphorylated to the active compound tedizolid. The antibacterial activity of tedizolid is mediated by binding to the 50S subunit of the bacterial ribosome resulting in inhibition of protein synthesis. Tedizolid inhibits bacterial protein synthesis through a mechanism of action different from that of other non-oxazolidinone class antibacterial drugs; therefore, cross-resistance between tedizolid and other classes of antibacterial drugs is unlikely. Tedizolid is bacteriostatic against Gram Positive bacteria such as enterococci, staphylococci, and streptococci. No drug-drug interactions were identified with tedizolid.
Tedizolid phosphate is an oxazolidinone prodrug which in the body is dephosphorylated to the active compound tedizolid. The antibacterial activity of tedizolid is mediated by binding to the 50S subunit of the bacterial ribosome resulting in inhibition of protein synthesis. Tedizolid inhibits bacterial protein synthesis through a mechanism of action different from that of other non-oxazolidinone class antibacterial drugs; therefore, cross-resistance between tedizolid and other classes of antibacterial drugs is unlikely. Tedizolid is bacteriostatic against Gram Positive bacteria such as enterococci, staphylococci, and streptococci. No drug-drug interactions were identified with tedizolid.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Tafluprost acid is a prostanoid selective FP receptor agonist that is believed to reduce the intraocular pressure (IOP) by increasing the outflow of aqueous humor. Studies in animals and humans suggest that the main mechanism of action is increased uveoscleral outflow. A prostaglandin analogue ester prodrug used topically (as eye drops) to control the progression of glaucoma and in the management of ocular hypertension. Tafluprost was approved for use in the U.S. on February 10, 2012. Tafluprost, preserved and preservative-free formulations, received marketing approval for the reduction of elevated intraocular pressure (IOP) in open-angle glaucoma and ocular hypertension in several European and Nordic countries as well as Japan, and some other Asia Pacific markets.

Showing 1481 - 1490 of 2596 results