{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Vinflunine (Javlor) is the first fluorinated microtubule inhibitor belonging to the Vinca alkaloids family. Vinflunine, at the lowest effective concentrations, interacts with the Vinca alkaloid binding site on tubulin, suppresses microtubule dynamics (switching at microtubule ends between phases of slow growth and rapid shortening) and microtubule treadmilling (growth at the plus end and shortening at the minus end of the microtubule), causes cell cycle arrest which appears on fluorescence-activated cell sorting analysis as a G2 + M phase arrest, and is associated with an accumulation of cells in mitosis leading to cell death via apoptosis. Vinflunine has been been approved for advanced or metastatic
transitional cell carcinoma of the urothelial tract. Pierre Fabre submitted an extension to the EU authorisation to add treatment of advanced breast cancer.
Status:
Possibly Marketed Outside US
Source:
NCT03892330: Phase 4 Interventional Not yet recruiting 0.5-14 Year Old Children With Nephroblastoma
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pirarubicin is a new kind of anthracene nucleus broad-spectrum antitumor antibiotic. This compound was rapidly incorporated into tumor cells, inhibiting DNA polymerase alpha, DNA topoisomerase II and subsequently DNA synthesis. Inhibition of RNA synthesis was also noted. It is indicated as an antineoplastic agent for the treatment of the following diseases: head and neck cancer, breast cancer, gastric cancer, urothelial cancer, ovarian cancer, uterine cancer, acute leukemia, malignant lymphoma. Among the side effects, cardiac toxicity, alopecia and disturbance of the digestive organs were mild.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Peplomycin has been developed as novel analog of bleomycin, which has less pulmonary toxicity than bleomycin. Peplomycin has been the subject of extensive studies in Japan and Europe. It is indicated for the treatment of malignant lymphoma, head and neck cancer, lung cancer, prostate cancer and skin cancer. General side effects are: digestive symptoms such as stomatitis, anorexia, nausea/vomiting, general malaise, depilation, fever, chills etc.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Nimorazole is an antimicrobial with activity against anaerobic bacteria and protozoa. Its actions and properties are similar to metronidazole. It has also been used in trials studying the treatment of Hypoxia, Radiotherapy, Hypoxic Modification, Gene Profile, Gene Signature, and Head and Neck Squamous Cell Carcinoma, among others. Azanta is developing, nimorazole, as an oral hypoxic radio-sensitiser for the treatment of patients with head and neck cancer who are undergoing radiotherapy. Previously, nimorazole has been approved for use as an anti-protozoal agent and has been launched worldwide. Nimorazole, for the treatment of head and neck cancer patients undergoing radiotherapy received orphan designation by EMA in 2011.
Status:
Possibly Marketed Outside US
Source:
NCT02088515: Phase 4 Interventional Completed Squamous Cell Carcinoma
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Nedaplatin is a second-generation cisplatin analogue with antineoplastic activity. nedaplatin forms reactive platinum complexes that bind to nucelophillic groups in DNA, resulting in intrastrand and interstrand DNA cross-links, apoptosis and cell death. It is currently registered for the treatment of various cancers (head and neck, testicular, lung, ovarian, cervical, non-small-cell lung) in Japan. The most commonly reported adverse reactions include nausea, vomiting, loss of appetite and hair loss. Nedaplatin may also cause nephrotoxicity at therapeutic doses, especially in patients with deteriorating renal function.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Uracil is a common and naturally occurring pyrimidine derivative, one of the four nucleobases in the nucleic acid of RNA In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced by it’s methylated form -- thymine. Originally discovered in 1900 by Alberto Ascoli, it was isolated by hydrolysis of yeast nuclein;[4] it was also found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil readily undergoes regular reactions including oxidation, nitration, and alkylation. While in the presence of phenol (PhOH) and sodium hypochlorite (NaOCl), uracil can be visualized in ultraviolet light. Uracil also has the capability to react with elemental halogens because of the presence of more than one strongly electron donating group. Uracil readily undergoes addition to ribose sugars and phosphates to partake in synthesis and further reactions in the body. Uracil becomes uridine, uridine monophosphate (UMP), uridine diphosphate (UDP), uridine triphosphate (UTP), and uridine diphosphate glucose (UDP-glucose). Each one of these molecules is synthesized in the body and has specific functions. Uracil's use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as allosteric regulator and coenzyme for reactions in the human body and in plants. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine is reacted with uracil, 5-fluorouracil is produced. 5-Fluorouracil is an anticancer drug (antimetabolite) used to masquerade as uracil during the nucleic acid replication process. In combination with Tegafur, uracil used as a chemotherapy drug (called UFT or UFUR) used in the treatment of cancer, primarily bowel cancer. UFT is an anticancer medication composed of a fixed molar ratio (1:4) of tegafur and uracil to be administered with calcium folinate.
Status:
US Approved Rx
(2017)
Source:
ANDA210124
(2017)
Source URL:
First approved in 1962
Source:
FLUOROURACIL by SPECTRUM PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Status:
US Approved Rx
(2017)
Source:
ANDA210124
(2017)
Source URL:
First approved in 1962
Source:
FLUOROURACIL by SPECTRUM PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Status:
US Approved Rx
(2017)
Source:
ANDA210124
(2017)
Source URL:
First approved in 1962
Source:
FLUOROURACIL by SPECTRUM PHARMS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Status:
US Approved Rx
(1994)
Source:
NDA020237
(1994)
Source URL:
First marketed in 1921
Source:
Pilocarpine Hydrochloride U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pilocarpine is an alkaloid extracted from plants of the genus Pilocarpus. The drug stimulates the muscarinic receptors (especially M3, which is expressed in smooth muscles and glands) and thus induces salivation, hypertension and water intake. Pilocarpine was appoved by FDA for the alleviation of symptoms of xerostomia in patients who have undergone radiation therapy to their head and neck cancer and in patients with Sjogren's Syndrome. Ophthalmic solution of the drug is prescribed for the treatment of glaucoma, ocular hypertension, postoperative elevated intraocular pressure, etc.