{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Artenimol (dihydroartemisinin) is a derivate of antimalarial compound artemisinin. Artenimol (dihydroartemisinin) is able to reach high concentrations within the parasitized erythrocytes. Its endoperoxide bridge is thought to be essential for its antimalarial activity, causing free-radical damage to parasite membrane systems including:
• Inhibition of falciparum sarcoplasmic-endoplasmic reticulum calcium ATPase, • Interference with mitochondrial electron transport • Interference with parasite transport proteins • Disruption of parasite mitochondrial function. Dihydroartemisinin in combination with piperaquine tetraphosphate (Eurartesim, EMA-approved in 2011) is indicated for the treatment of uncomplicated Plasmodium falciparum malaria. The formulation meets WHO recommendations, which advise combination treatment for Plasmodium falciparum malaria to reduce the risk of resistance development, with artemisinin-based preparations regarded as the ‘policy standard’. However, experimental testing demonstrates that, due to its intrinsic chemical instability, dihydroartemisinin is not suitable to be used in pharmaceutical formulations. In addition, data show that the currently available dihydroartemisinin preparations fail to meet the internationally accepted stability requirements.
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Artenimol (dihydroartemisinin) is a derivate of antimalarial compound artemisinin. Artenimol (dihydroartemisinin) is able to reach high concentrations within the parasitized erythrocytes. Its endoperoxide bridge is thought to be essential for its antimalarial activity, causing free-radical damage to parasite membrane systems including:
• Inhibition of falciparum sarcoplasmic-endoplasmic reticulum calcium ATPase, • Interference with mitochondrial electron transport • Interference with parasite transport proteins • Disruption of parasite mitochondrial function. Dihydroartemisinin in combination with piperaquine tetraphosphate (Eurartesim, EMA-approved in 2011) is indicated for the treatment of uncomplicated Plasmodium falciparum malaria. The formulation meets WHO recommendations, which advise combination treatment for Plasmodium falciparum malaria to reduce the risk of resistance development, with artemisinin-based preparations regarded as the ‘policy standard’. However, experimental testing demonstrates that, due to its intrinsic chemical instability, dihydroartemisinin is not suitable to be used in pharmaceutical formulations. In addition, data show that the currently available dihydroartemisinin preparations fail to meet the internationally accepted stability requirements.
Status:
US Approved Rx
(2019)
Source:
NDA212306
(2019)
Source URL:
First approved in 2019
Source:
NDA212306
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Selinexor (KPT-330) is a first in class XPO1 antagonist being evaluated in multiple later stage clinical trials in patients with relapsed and/or refractory hematological and solid tumor malignancies.
Status:
US Approved Rx
(2024)
Source:
NDA217439
(2024)
Source URL:
First approved in 2018
Source:
TALZENNA by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
BMN-673 (8R,9S) is the (8R,9S) enantiomer of BMN-673, known as talazoparib. BMN 673 is a novel inhibitor of nuclear enzyme poly (ADP-ribose) polymerase (PARP) with potential antineoplastic activity.
Status:
US Approved Rx
(2017)
Source:
NDA208051
(2017)
Source URL:
First approved in 2017
Source:
NDA208051
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Neratinib (HKI-272) is a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is a modified form of the discontinued compound pelitinib, and was originally being develoAdditionally, phase II development of oral neratinib as a neoadjuvant therapy for breast cancer, as a second-line therapy for non-small cell lung cancer, and for other solid tumours is also in progress in numerous countries worldwide. ped by Wyeth (later Pfizer). Oral neratinib is awaiting approval as an extended adjuvant therapy for breast cancer in the EU and in the US. Blocking HER2 function by a small molecule kinase inhibitor, such as neratinib, represents an attractive alternate strategy for the growth inhibition of HER2-positive tumours.
Status:
US Approved Rx
(2017)
Source:
NDA209935
(2017)
Source URL:
First approved in 2017
Source:
NDA209935
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ribociclib, also known as LEE011, is an orally available cyclin-dependent kinase (CDK) inhibitor targeting cyclin D1/CDK4 and cyclin D3/CDK6 cell cycle pathway, with potential antineoplastic activity. CDK4/6 inhibitor LEE011 specifically inhibits CDK4 and 6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Inhibition of Rb phosphorylation prevents CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase, suppressing DNA synthesis and inhibiting cancer cell growth. Overexpression of CDK4/6, as seen in certain types of cancer, causes cell cycle deregulation. Ribociclib is in phase III clinical trials by Novartis for the treatment of postmenopausal women with advanced breast cancer. Phase II clinical trials are also in development for the treatment of liposarcoma, ovarian cancer, fallopian tube cancer, peritoneum cancer, endometrial cancer, and gastrointestinal cancer. Preregistration for Breast cancer (First-line therapy, Combination therapy, Late-stage disease) in the USA (PO) in November 2016.
Status:
US Approved Rx
(2017)
Source:
NDA208051
(2017)
Source URL:
First approved in 2017
Source:
NDA208051
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Neratinib (HKI-272) is a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is a modified form of the discontinued compound pelitinib, and was originally being develoAdditionally, phase II development of oral neratinib as a neoadjuvant therapy for breast cancer, as a second-line therapy for non-small cell lung cancer, and for other solid tumours is also in progress in numerous countries worldwide. ped by Wyeth (later Pfizer). Oral neratinib is awaiting approval as an extended adjuvant therapy for breast cancer in the EU and in the US. Blocking HER2 function by a small molecule kinase inhibitor, such as neratinib, represents an attractive alternate strategy for the growth inhibition of HER2-positive tumours.
Status:
US Approved Rx
(2023)
Source:
NDA216793
(2023)
Source URL:
First approved in 2017
Source:
ZEJULA by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Status:
US Approved Rx
(2023)
Source:
NDA216793
(2023)
Source URL:
First approved in 2017
Source:
ZEJULA by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Status:
US Approved Rx
(2017)
Source:
NDA209935
(2017)
Source URL:
First approved in 2017
Source:
NDA209935
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ribociclib, also known as LEE011, is an orally available cyclin-dependent kinase (CDK) inhibitor targeting cyclin D1/CDK4 and cyclin D3/CDK6 cell cycle pathway, with potential antineoplastic activity. CDK4/6 inhibitor LEE011 specifically inhibits CDK4 and 6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Inhibition of Rb phosphorylation prevents CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase, suppressing DNA synthesis and inhibiting cancer cell growth. Overexpression of CDK4/6, as seen in certain types of cancer, causes cell cycle deregulation. Ribociclib is in phase III clinical trials by Novartis for the treatment of postmenopausal women with advanced breast cancer. Phase II clinical trials are also in development for the treatment of liposarcoma, ovarian cancer, fallopian tube cancer, peritoneum cancer, endometrial cancer, and gastrointestinal cancer. Preregistration for Breast cancer (First-line therapy, Combination therapy, Late-stage disease) in the USA (PO) in November 2016.