U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 27 results

Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.
Dasatinib [BMS 354825] is an orally active, small molecule, dual inhibitor of both SRC and ABL kinases that is under development with Bristol-Myers Squibb for the treatment of patients with chronic myelogenous leukaemia (CML) and imatinib-acquired resistance/intolerance. It’s used for the treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase chronic myeloid leukemia with resistance or intolerance to prior therapy. Also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. While imatinib remains a frontline therapy for CML, patients with advanced disease frequently develop resistance to imatinib therapy through multiple mechanisms. Dasatinib is also undergoing preclinical evaluation for its potential as a therapy against multiple myeloma. Bristol-Myers Squibb has a composition-of-matter patent covering this research approach that will expire in 2020. Dasatinib, at nanomolar concentrations, inhibits the following kinases: BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and PDGFRβ. Based on modeling studies, dasatinib is predicted to bind to multiple conformations of the ABL kinase.
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Cyclophosphamide (the generic name for Cytoxan, Neosar, Revimmune), also known as cytophosphane, is a nitrogen mustard alkylating agent, from the oxazophorines group. It is used to treat various types of cancer and some autoimmune disorders. It is a "prodrug"; it is converted in the liver to active forms that have chemotherapeutic activity
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Status:
Investigational
Source:
NCT02668315: Phase 1/Phase 2 Interventional Completed Hematologic Malignancy
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



UM171 is a potent agonist of human hematopoietic stem cell renewal, independently of AhR suppression. UM171 act differently than other small molecule stimulators of hematopoiesis, such as the aryl hydrocarbon receptor (AhR) antagonist StemRegenin 1 (SR1). Addition of UM171 to cultures containing SR1 and cytokines further enhances the ex vivo expansion of normal HSCs, including CD34+ cells.
OTS-167 is a maternal embryonic leucine zipper kinase (MELK) inhibitor which demonstrated antitumor properties in laboratory tests. It is being developed as an anti-cancer drug. The compound has been shown to suppress the growth of breast, lung, pancreatic and prostate cancer cells that express high levels of the MELK protein. OTS167 reached phase II clinical trials in patients with AML, ALL, advanced MDSs, advanced MPNs, or advanced CML and phase I in patients with breast cancer.
Status:
Investigational
Source:
NCT01677780: Phase 1 Interventional Completed Myelogenous Leukemia, Chronic, Neoplasms, Myelogenous Leukemia, Acute
(2012)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



RO-5045337 (RG7112) is a small molecule that binds to a MDM2, a negative regulator of tumor-supressor protein p53. It was discovered by Roche and investigated in clinical trials against solid tumors, leukemias and sarcomas.
Pevonedistat (MLN4924), discovered by Millennium, is a small molecule inhibitor of the NEDD8-Activating Enzyme (NAE), a key component of the protein homeostasis pathway. MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. This drug is in phase II clinical trial for the treatment acute myeloid leukemia, chronic myelomonocytic leukemia and myelodysplastic syndromes. In addition in phase I for treatment acute lymphoblastic leukemia. The ability of MLN4924 to cross the blood-brain barrier, its low toxicity, and clinical efficacy in other cancers suggests that this drug is an attractive treatment against glioblastomas.
Lestaurtinib (CEP-701, KT-5555) is an orally bio-available polyaromatic indolocarbazole alkaloid derived from K-252a. Lestaurtinib is a multi-targeted tyrosine kinase inhibitor which has been shown to potently inhibit FLT3 at nanomolar concentrations in preclinical studies, leading to its rapid development as a potential targeted agent for treatment of AML. Phase I studies have shown lestaturtinib to be an active agent particularly when used in combination with cytotoxic drugs. Currently, Phase II and Phase III studies are underway aiming to establish the future of this agent as a treatment option for patients with FLT3-ITD AML.