U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 16 of 16 results

Ceftaroline is a fifth-generation broad-spectrum cephalosporin with potent antimicrobial activity against Gram-positive and Gram-negative pathogens. Ceftaroline is the bioactive metabolite of ceftaroline fosamil, an N-phosphonoamino water-soluble cephalosporin prodrug, which is rapidly converted in vivo upon the hydrolysis of the phosphonate group by plasma phosphatises. Ceftaroline fosamil is being developed by Forest Laboratories, under a license from Takeda. In 2010, the U.S. Food and Drug Administration (FDA) approved ceftaroline fosamil for use in the treatment of acute bacterial skin and skin structure infections as well as community-acquired pneumonia. Ceftaroline has bactericidal activity against methicillin-resistant Staphylococcus aureus, therefore serving as an attractive alternative agent for the treatment of methicillin-resistant Staphylococcus aureus bacteremia when approved agents are contraindicated or treatment failures have occurred. Like other β-lactams, ceftaroline’s mechanism of action is mediated by binding to the penicillin-binding protein (PBP), the enzyme mediating the cross-linking transpeptidation of the peptidoglycan which are the terminal steps in completing formation of the bacterial cell wall. MRSA strains have a mutated PBP2a which prohibits β-lactam antibiotics from accessing its active site that mediates the transpeptidation reaction. Ceftaroline possesses an ethoxyimino side-chain mimicking a portion of a cell wall structure, which acts as a “Trojan horse”, allosterically opening and facilitating access to the active site of the PBP2a. Based on clinical trial data to date, ceftaroline appears to be safe and well-tolerated. Since ceftaroline is a cephalosporin, it has caused serious hypersensitivity reactions in patients who are allergic to cephalosporins and among some patients with penicillin allergies.
Status:
Investigational
Source:
NCT04187144: Phase 3 Interventional Completed Urinary Tract Infections
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that selectively inhibits bacterial DNA gyrase and topoisomerase IV by a unique mechanism, one that is not utilized by any currently approved human therapeutic agent. As a consequence of its novel mode of action, gepotidacin is active in vitro against target pathogens carrying resistance determinants to established antibacterials, including fluoroquinolones. Gepotidacin has demonstrated in vitro activity against key pathogens, including drug-resistant strains, associated with a range of conventional and biothreat infections. GlaxoSmithKline is developing Gepotidacin for the treatment of gonorrhoea and skin and soft tissue infections.
Status:
Investigational
Source:
NCT04187144: Phase 3 Interventional Completed Urinary Tract Infections
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that selectively inhibits bacterial DNA gyrase and topoisomerase IV by a unique mechanism, one that is not utilized by any currently approved human therapeutic agent. As a consequence of its novel mode of action, gepotidacin is active in vitro against target pathogens carrying resistance determinants to established antibacterials, including fluoroquinolones. Gepotidacin has demonstrated in vitro activity against key pathogens, including drug-resistant strains, associated with a range of conventional and biothreat infections. GlaxoSmithKline is developing Gepotidacin for the treatment of gonorrhoea and skin and soft tissue infections.
Status:
Investigational
Source:
NCT04187144: Phase 3 Interventional Completed Urinary Tract Infections
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gepotidacin (formerly GSK2140944) is a novel, first-in-class, triazaacenaphthylene antibacterial that selectively inhibits bacterial DNA gyrase and topoisomerase IV by a unique mechanism, one that is not utilized by any currently approved human therapeutic agent. As a consequence of its novel mode of action, gepotidacin is active in vitro against target pathogens carrying resistance determinants to established antibacterials, including fluoroquinolones. Gepotidacin has demonstrated in vitro activity against key pathogens, including drug-resistant strains, associated with a range of conventional and biothreat infections. GlaxoSmithKline is developing Gepotidacin for the treatment of gonorrhoea and skin and soft tissue infections.
Status:
Possibly Marketed Outside US
Source:
DALVANCE by Vicuron Pharmaceuticals
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dalbavancin is a mixture of five closely related active homologs (A0, A1, B0, B1, and B2); the component B0 is the major component of dalbavancin. The predominant component of dalbavancin is Factor B0, which accounts for >75% of the whole complex. Dalbavancin is a second-generation lipoglycopeptide antibiotic that was designed to improve on the natural glycopeptides currently available, such as vancomycin and teicoplanin. Modifications from these older glycoprotein classes allowed a similar mechanism of action with increased activity and once weekly dosing. Its use is indicated for the treatment of acute bacterial skin and skin structure infections (ABSSSI) caused by the following gram-positive microorganisms: Staphylococcus aureus (including methicillin-susceptible and methicillin-resistant strains), S. pyogenes, S. agalactiae, and S. anginosus group (including S. anginosus, S. intermedius, and S. constellatus). Under the brand name DALVANCE Dalbavancin is indicated for acute bacterial skin and skin structure infections (ABSSSI) caused by designated susceptible strains of Gram-positive microorganisms. The bactericidal action of dalbavancin results primarily from inhibition of cell-wall biosynthesis. Specifically, dalbavancin prevents incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides, which is normally a five-point interaction. Binding of dalbavancin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, dalbavancin alters bacterial-cell-membrane permeability and RNA synthesis.
Dalbavancin is a second-generation lipoglycopeptide antibiotic that was designed to improve on the natural glycopeptides currently available, such as vancomycin and teicoplanin. Modifications from these older glycoprotein classes allowed a similar mechanism of action with increased activity and once weekly dosing. Its use is indicated for the treatment of acute bacterial skin and skin structure infections (ABSSSI) caused by the following gram-positive microorganisms: Staphylococcus aureus (including methicillin-susceptible and methicillin-resistant strains), S. pyogenes, S. agalactiae, and S. anginosus group (including S. anginosus, S. intermedius, and S. constellatus). Under the brand name DALVANCE Dalbavancin is indicated for acute bacterial skin and skin structure infections (ABSSSI) caused by designated susceptible strains of Gram-positive microorganisms. The bactericidal action of dalbavancin results primarily from inhibition of cell-wall biosynthesis. Specifically, dalbavancin prevents incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides, which is normally a five-point interaction. Binding of dalbavancin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, dalbavancin alters bacterial-cell-membrane permeability and RNA synthesis.

Showing 11 - 16 of 16 results