{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Showing 1581 - 1587 of 1587 results
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(27)(iii) antimicrobial:antiseptic hand wash tribromsalan
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tribromsalan (trade name Temasept IV) is a member of brominated salicylanilides chemical family. Was initially registered in 1964 manufactured by Hexcel Corporation, Sherwin Williams Chemicals. It is a pesticide type with antimicrobial and preservative features found its application in hard surfaces, laundry, textiles, and manufactured products. Types of tribromsalan formulations include solid, solutions, and sprays and its usual carrier is soap. Limited exposure is possible based on the registered uses of these products as disinfectants, laundry additives, textile preservatives, and manufactured products and do not include direct application to a food or feed crop. In 1974 FDA directed the removal of tribromsalan drug products from the market because it was found to make skin extrasensitive to light. For the same reason it was forbidden in Europe since the 1970s. Since 1982 the OTC topical antimicrobial drug products rulemaking was reopened and included tribromsalan in a list of antimicrobial OTC Drug Products. At present tribromsalan is considered an antiseptic active ingredient eligible for the OTC use as a consumer antiseptic hand and body wash drug product. It was reported that tribromsalan, inhibits NF-kappaB signaling via inhibition of IkappaBalpha phosphorylation with IC50 of 7.9 uM. This finding provides new information on activities and mechanisms of action that may suggest mechanisms of potential novel applications in cancer treatment of such drugs as tribromsalan.
Status:
Possibly Marketed Outside US
Source:
Dexinling by Shenzhen Deyintang Biotechnology Co., Ltd.
(2022)
Source URL:
First approved in 2022
Source:
Dexinling by Shenzhen Deyintang Biotechnology Co., Ltd.
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Sesamin is a naturally occurring compound found in sesame oil and in the bark and fruit of certain plant species. SESAMIN, (±)- is a racemic dl-form. The dl-form is also known as fagarol, and may be isolated from the bark of various fagara species. Sesamin, either as the d-form or the dl-form, has now been found to possess psychotropic activity, i.e., administration of appropriate dosages to a human or animal subject elicits a psychotropic response. Sesamin is catered to be a nutritional supplement that confers antioxidant and antiinflammatory effects (if touting its health properties) or possibly being an estrogen receptor modulator and fat burner (if targeting athletes or persons wishing to lose weight).
Sesamin has a few mechanisms, and when looking at it holistically it can be summed up as a fatty acid metabolism modifier. It appears to inhibit an enzyme known as delta-5-desaturase (Δ5-desaturase) which is a rate-limiting enzyme in fatty acid metabolism; inhibiting this enzyme results in lower levels of both eicosapentaenoic acid (EPA, one of the two fish oil fatty acids) as well as arachidonic acid, and this mechanism appears to be relevant following oral ingestion. The other main mechanism is inhibiting a process known as Tocopherol-ω-hydroxylation, which is the rate-limiting step in the metabolism of Vitamin E; by inhibiting this enzyme, sesamin causes a relative increase of vitamin E in the body but particularly those of the gamma subset (γ-tocopherol and γ-tocotrienol) and this mechanism has also been confirmed to be active following oral ingestion. Sesamin is a potent and specific inhibitor of delta 5 desaturases in polyunsaturated fatty acid biosynthesis. Sesamin inhibits particular CYP3A enzymes that are involved in vitamin E metabolism, where the enzyme initially ω-hydroxylates vitamin E (required step) and then the rest of vitamin E is subject to fat oxidation. By inhibiting this step, sesamin causes an increase in circulating and organ concentrations of vitamin E. Sesamin is thought to have PPARα activating potential in the liver, but it is uncertain how much practical relevance this has in humans due to this being a mechanism that differs between species.
Status:
Possibly Marketed Outside US
Source:
MIF900002
(2009)
Source URL:
First approved in 2009
Source:
MIF900002
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Metomidate is a non-barbiturate imidazole which produces a sleepy condition of 20-60 minutes duration without substantial analgesia. Since the beginning of 1997 the use of the hypnotic drug metomidate (Hypnodil) in swine is nor longer allowed. This ban caused a substantial therapeutic deficit for anesthesia in swine. 11C-metomidate may be used with positron emission tomography which can differentiate adrenocortical from nonadrenocortical tumors and a suspected adrenocortical cancer may be characterized and staged before surgery. Metomidate hydrochloride is for the sedation and anesthesia of aquarium and non-food fish species. Aquacalm has been granted Indexed status by the FDA for this purpose.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Class:
MIXTURE
Conditions:
Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Approved Rx
(2023)
Source:
ANDA216548
(2023)
Source URL:
First approved in 1988
Source:
VOLTAREN by NOVARTIS
Source URL:
Class:
POLYMER
Conditions:
Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) of the phenylacetic acid class with anti-inflammatory, analgesic, and antipyretic properties. Contrary to the action of many traditional NSAIDs, diclofenac inhibits cyclooxygenase (COX)-2 enzyme with greater potency than it does COX-1. In addition diclofenac can inhibit the thromboxane-prostanoid receptor, affect arachidonic acid release and uptake, inhibit lipoxygenase enzymes, and activate the nitric oxide-cGMP antinociceptive pathway. Other novel mechanisms of action may include the inhibition of substrate P, inhibition of peroxisome proliferator activated receptor gamma (PPARgamma), blockage of acid-sensing ion channels, alteration of interleukin-6 production, and inhibition of N-methyl-D-aspartate (NMDA) receptor hyperalgesia. Similar to other NSAIDs, diclofenac is associated with serious dose-dependent gastrointestinal, cardiovascular, and renal adverse effects. Since its introduction in 1973, a number of different diclofenac-containing drug products have been developed with the goal of improving efficacy, tolerability, and patient convenience. Delayed- and extended-release forms of diclofenac sodium were initially developed with the goal of improving the safety profile of diclofenac and providing convenient, once-daily dosing for the treatment of patients with chronic pain. New drug products consisting of diclofenac potassium salt were associated with faster absorption and rapid onset of pain relief. These include diclofenac potassium immediate-release tablets, diclofenac potassium liquid-filled soft gel capsules, and diclofenac potassium powder for oral solution. The advent of topical formulations of diclofenac enabled local treatment of pain and inflammation while minimizing systemic absorption of diclofenac. SoluMatrix diclofenac, consisting of submicron particles of diclofenac free acid and a proprietary combination of excipients, was developed to provide analgesic efficacy at reduced doses associated with lower systemic absorption. The drug's likely impact on the Asian vulture population was widely reported. The dramatic mortality was attributed largely to renal failure caused by exposure to diclofenac in livestock carcasses on which the birds fed. Although not the most endearing species, vultures are important environmental scavengers and, since veterinary use of diclofenac was stopped in the region in 2006, the decline in vulture numbers has slowed.
Status:
US Approved Rx
(2010)
Source:
NDA021879
(2010)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Status:
US Approved Rx
(2010)
Source:
NDA021879
(2010)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.