U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1211 - 1220 of 2252 results

Status:
First approved in 2006

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ranolazine is a metabolic modulator developed by Syntex (Roche) and sold under the trade name Ranexa by Gilead Sciences. Ranexa has antianginal and anti-ischemic effects that do not depend upon reductions in heart rate or blood pressure. The mechanism of action of ranolazine is unknown. It does not increase the rate-pressure product, a measure of myocardial work, at maximal exercise. In vitro studies suggest that ranolazine is a P-gp inhibitor. Ranolazine is believed to have its effects via altering the trans-cellular late sodium current. It is by altering the intracellular sodium level that ranolazine affects the sodium-dependent calcium channels during myocardial ischemia. Thus, ranolazine indirectly prevents the calcium overload that causes cardiac ischemia. Because Ranexa prolongs the QT interval, it should be reserved for patients who have not achieved an adequate response with other antianginal drugs. Ranexa should be used in combination with amlodipine, beta-blockers or nitrates. The effect on angina rate or exercise tolerance appeared to be smaller in women than men.
Paliperidone (9-OH-risperidone) is the primary active metabolite of the older antipsychotic risperidone. While its specific mechanism of action is unknown, it is believed that paliperidone and risperidone act via similar if not the same pathways. It has been proposed that the drug's therapeutic activity in schizophrenia is mediated through a combination of central dopamine Type 2 (D2) and serotonin Type 2 (5HT2A) receptor antagonism. Paliperidone is also active as an antagonist at alpha 1 and alpha 2 adrenergic receptors and H1 histaminergic receptors, which may explain some of the other effects of the drug. Paliperidone was approved by the FDA for treatment of schizophrenia on December 20, 2006. Very common adverse effects are: headache, tachycardia, somnolence and insomnia.
Lenalidomide (trade name Revlimid) is a derivative of thalidomide introduced in 2004. It is an immunomodulatory agent with anti-angiogenic properties. Revlimid in combination with dexamethasone is indicated for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Also is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. In addition, Revlimid is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. The mechanism of action of lenalidomide remains to be fully characterized. Lenalidomide inhibited the secretion of pro-inflammatory cytokines and increased the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide causes a delay in tumor growth in some in vivo nonclinical hematopoietic tumor models including multiple myeloma. Immunomodulatory properties of lenalidomide include activation of T cells and natural killer (NK) cells, increased numbers of NKT cells, and inhibition of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. In multiple myeloma cells, the combination of lenalidomide and dexamethasone synergizes the inhibition of cell proliferation and the induction of apoptosis. Recently was discovered, that protein cereblon (CRBN) is a proximate, therapeutically important molecular target of lenalidomide. Low CRBN expression was found to correlate with drug resistance in multiple myeloma (MM) cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by (immune-modulatory drugs) treatment. CRBN is also implicated in several effects of immunomodulatory drugs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the immunomodulatory drugs (IMiDs) are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. Lenalidomide also inhibited the expression of cyclooxygenase-2 (COX-2) but not COX-1 in vitro.
Lenalidomide (trade name Revlimid) is a derivative of thalidomide introduced in 2004. It is an immunomodulatory agent with anti-angiogenic properties. Revlimid in combination with dexamethasone is indicated for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Also is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. In addition, Revlimid is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. The mechanism of action of lenalidomide remains to be fully characterized. Lenalidomide inhibited the secretion of pro-inflammatory cytokines and increased the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide causes a delay in tumor growth in some in vivo nonclinical hematopoietic tumor models including multiple myeloma. Immunomodulatory properties of lenalidomide include activation of T cells and natural killer (NK) cells, increased numbers of NKT cells, and inhibition of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. In multiple myeloma cells, the combination of lenalidomide and dexamethasone synergizes the inhibition of cell proliferation and the induction of apoptosis. Recently was discovered, that protein cereblon (CRBN) is a proximate, therapeutically important molecular target of lenalidomide. Low CRBN expression was found to correlate with drug resistance in multiple myeloma (MM) cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by (immune-modulatory drugs) treatment. CRBN is also implicated in several effects of immunomodulatory drugs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the immunomodulatory drugs (IMiDs) are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. Lenalidomide also inhibited the expression of cyclooxygenase-2 (COX-2) but not COX-1 in vitro.
Lenalidomide (trade name Revlimid) is a derivative of thalidomide introduced in 2004. It is an immunomodulatory agent with anti-angiogenic properties. Revlimid in combination with dexamethasone is indicated for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Also is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. In addition, Revlimid is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. The mechanism of action of lenalidomide remains to be fully characterized. Lenalidomide inhibited the secretion of pro-inflammatory cytokines and increased the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide causes a delay in tumor growth in some in vivo nonclinical hematopoietic tumor models including multiple myeloma. Immunomodulatory properties of lenalidomide include activation of T cells and natural killer (NK) cells, increased numbers of NKT cells, and inhibition of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. In multiple myeloma cells, the combination of lenalidomide and dexamethasone synergizes the inhibition of cell proliferation and the induction of apoptosis. Recently was discovered, that protein cereblon (CRBN) is a proximate, therapeutically important molecular target of lenalidomide. Low CRBN expression was found to correlate with drug resistance in multiple myeloma (MM) cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by (immune-modulatory drugs) treatment. CRBN is also implicated in several effects of immunomodulatory drugs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the immunomodulatory drugs (IMiDs) are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. Lenalidomide also inhibited the expression of cyclooxygenase-2 (COX-2) but not COX-1 in vitro.
Tigecycline (INN) is an antibiotic used to treat a number of bacterial infections. It is a first in class glycylcycline that is administered intravenously. For the treatment of infections caused by susceptible strains of the designated microorganisms in the following conditions: Complicated skin and skin structure infections caused by Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes and Bacteroides fragilis. Complicated intra-abdominal infections caused by Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros. Tigecycline, a glycylcycline, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. Tigecycline carries a glycylamido moiety attached to the 9-position of minocycline. The substitution pattern is not present in any naturally occurring or semisynthetic tetracycline and imparts certain microbiologic properties to tigecycline. In general, tigecycline is considered bacteriostatic; however, TYGACIL has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila. In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Conditions:

BARACLUDE® is the tradename for entecavir, a guanosine nucleoside analogue with selective activity against hepatitis B virus (HBV). It inhibits all three steps in the viral replication process. By competing with the natural substrate deoxyguanosine triphosphate, entecavir functionally inhibits all three activities of the HBV polymerase (reverse transcriptase, rt): (1) base priming, (2) reverse transcription of the negative strand from the pregenomic messenger RNA, and (3) synthesis of the positive strand of HBV DNA. Upon activation by kinases, the drug can be incorporated into the DNA which has the ultimate effect of inhibiting the HBV polymerase activity. Entecavir is used for the treatment of chronic hepatitis B virus infection in adults with evidence of active viral replication and either evidence of persistent elevations in serum aminotransferases (ALT or AST) or histologically active disease.
Lenalidomide (trade name Revlimid) is a derivative of thalidomide introduced in 2004. It is an immunomodulatory agent with anti-angiogenic properties. Revlimid in combination with dexamethasone is indicated for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Also is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. In addition, Revlimid is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. The mechanism of action of lenalidomide remains to be fully characterized. Lenalidomide inhibited the secretion of pro-inflammatory cytokines and increased the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide causes a delay in tumor growth in some in vivo nonclinical hematopoietic tumor models including multiple myeloma. Immunomodulatory properties of lenalidomide include activation of T cells and natural killer (NK) cells, increased numbers of NKT cells, and inhibition of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. In multiple myeloma cells, the combination of lenalidomide and dexamethasone synergizes the inhibition of cell proliferation and the induction of apoptosis. Recently was discovered, that protein cereblon (CRBN) is a proximate, therapeutically important molecular target of lenalidomide. Low CRBN expression was found to correlate with drug resistance in multiple myeloma (MM) cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by (immune-modulatory drugs) treatment. CRBN is also implicated in several effects of immunomodulatory drugs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the immunomodulatory drugs (IMiDs) are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. Lenalidomide also inhibited the expression of cyclooxygenase-2 (COX-2) but not COX-1 in vitro.
Amfenac (AHR 5850) is a non-steroidal anti-inflammatory compound possessing antipyretic and analgesic properties. It is an inhibitor of cyclooxygenases. Amfenac sodium has been on the Japanese market since 1986 (as FENAZOX®, Meiji) in an oral dosage form (50 mg, four-times-daily) indicated for the treatment of pain and inflammation associated with rheumatoid and osteoarthritis and low back pain, as well as the treatment of pain and inflammation following surgery, injury or tooth extraction. Amfenac is an active moiety of nepafenac (amfenac amide), the prodrug has very weak cyclooxygenase inhibitory activity whereas amfenac exhibits more potent cyclooxygenase activity. Nepafenac at a concentration of 0.1% (NEVANAC) was approved for marketing in the US in 2005. Nepafenac is also approved for marketing in the European Union(EU) and Japan as well as over 60 other countries for the treatment of postoperative pain and inflammation associated with cataract surgery.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:

Conditions:

BARACLUDE® is the tradename for entecavir, a guanosine nucleoside analogue with selective activity against hepatitis B virus (HBV). It inhibits all three steps in the viral replication process. By competing with the natural substrate deoxyguanosine triphosphate, entecavir functionally inhibits all three activities of the HBV polymerase (reverse transcriptase, rt): (1) base priming, (2) reverse transcription of the negative strand from the pregenomic messenger RNA, and (3) synthesis of the positive strand of HBV DNA. Upon activation by kinases, the drug can be incorporated into the DNA which has the ultimate effect of inhibiting the HBV polymerase activity. Entecavir is used for the treatment of chronic hepatitis B virus infection in adults with evidence of active viral replication and either evidence of persistent elevations in serum aminotransferases (ALT or AST) or histologically active disease.

Showing 1211 - 1220 of 2252 results