{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
DIDRONEL by MGI PHARMA INC
(1987)
Source URL:
First approved in 1977
Source:
DIDRONEL by APIL
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Etidronate is a salt of etidronic acid (brand name Didronel, also known as EHDP) a diphosphonate, which is indicated for the treatment of symptomatic Paget’s disease of bone and in the prevention and treatment of heterotopic ossification following total hip replacement or due to spinal cord injury. Didronel is not approved for the treatment of osteoporosis. This drugs acts primarily on bone. It can inhibit the formation, growth, and dissolution of hydroxyapatite crystals and their amorphous precursors by chemisorption to calcium phosphate surfaces. Inhibition of crystal resorption occurs at lower doses than are required to inhibit crystal growth. Both effects increase as the dose increases. Preclinical studies indicate etidronate disodium does not cross the blood-brain barrier. Didronel is not metabolized. The amount of drug absorbed after an oral dose is approximately 3 percent. Bisphosphonates, when attached to bone tissue, are absorbed by osteoclasts, the bone cells that breaks down bone tissue. Although the mechanism of action of non-nitrogenous bisphosphonates has not been fully elucidated, available data suggest that they bind strongly to hydroxyapatite crystals in the bone matrix, preferentially at the sites of increased bone turnover and inhibit the formation and dissolution of the crystals. Other actions may include direct inhibition of mature osteoclast function, promotion of osteoclast apoptosis, and interference with osteoblast-mediated osteoclast activation. Etidronic acid may promote osteoclast apoptosis by competing with adenosine triphosphate (ATP) in the cellular energy metabolism. The osteoclast initiates apoptosis and dies, leading to an overall decrease in the breakdown of bone.
Status:
US Previously Marketed
Source:
TIMENTIN by GLAXOSMITHKLINE
(1986)
Source URL:
First approved in 1976
Source:
TICAR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ticarcillin (also known as Ticar) is a semisynthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram-negative aerobic and anaerobic bacteria. Ticarcillin is not absorbed orally; therefore, it must be given intravenously or intramuscularly. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis when the bacteria tries to divide, causing death. Usage of ticar was discontinued.
Status:
US Previously Marketed
Source:
TIMENTIN by GLAXOSMITHKLINE
(1986)
Source URL:
First approved in 1976
Source:
TICAR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ticarcillin (also known as Ticar) is a semisynthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram-negative aerobic and anaerobic bacteria. Ticarcillin is not absorbed orally; therefore, it must be given intravenously or intramuscularly. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis when the bacteria tries to divide, causing death. Usage of ticar was discontinued.
Status:
US Previously Marketed
Source:
TIMENTIN by GLAXOSMITHKLINE
(1986)
Source URL:
First approved in 1976
Source:
TICAR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ticarcillin (also known as Ticar) is a semisynthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram-negative aerobic and anaerobic bacteria. Ticarcillin is not absorbed orally; therefore, it must be given intravenously or intramuscularly. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis when the bacteria tries to divide, causing death. Usage of ticar was discontinued.
Status:
US Previously Marketed
Source:
TIMENTIN by GLAXOSMITHKLINE
(1986)
Source URL:
First approved in 1976
Source:
TICAR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ticarcillin (also known as Ticar) is a semisynthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram-negative aerobic and anaerobic bacteria. Ticarcillin is not absorbed orally; therefore, it must be given intravenously or intramuscularly. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis when the bacteria tries to divide, causing death. Usage of ticar was discontinued.
Status:
US Previously Marketed
Source:
TIMENTIN by GLAXOSMITHKLINE
(1986)
Source URL:
First approved in 1976
Source:
TICAR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ticarcillin (also known as Ticar) is a semisynthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram-negative aerobic and anaerobic bacteria. Ticarcillin is not absorbed orally; therefore, it must be given intravenously or intramuscularly. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis when the bacteria tries to divide, causing death. Usage of ticar was discontinued.
Status:
US Previously Marketed
Source:
VELOSEF by BRISTOL MYERS SQUIBB
(1982)
Source URL:
First approved in 1974
Source:
ANSPOR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephradine is a semisynthetic cephalosporin antibiotic. Cephradine is active against the following organisms in vitro: Group A beta-hemolytic streptococci; Staphylococci, including coagulase-positive, coagulase-negative, and penicillinase-producing strains; Streptococcus pneumoniae (formerly Diplococcus pneumoniae); Escherichia coli; Proteus mirabilis; Klebsiella species; Hemophilus influenza. It works by stopping the growth of bacteria. It is used to treat a wide variety of bacterial infections (e.g., skin, ear, respiratory and urinary tract infections). Pseudomembranous colitis has been reported in patients receiving cephradine both orally and intravenously. Diarrhea generally starts 1 to 16 days after starting cephradine therapy. Gastrointestinal side effects have included nausea, vomiting. Hypersensitivity reactions have included rash, urticaria, pruritus, and joint pain. Bacteriostats may interfere with the bactericidal action of cephalosporins in acute infection; other agents, e.g., aminoglycosides, colistin, polymyxins, vancomycin, may increase the possibility of nephrotoxicity.
Status:
US Previously Marketed
Source:
VELOSEF by BRISTOL MYERS SQUIBB
(1982)
Source URL:
First approved in 1974
Source:
ANSPOR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephradine is a semisynthetic cephalosporin antibiotic. Cephradine is active against the following organisms in vitro: Group A beta-hemolytic streptococci; Staphylococci, including coagulase-positive, coagulase-negative, and penicillinase-producing strains; Streptococcus pneumoniae (formerly Diplococcus pneumoniae); Escherichia coli; Proteus mirabilis; Klebsiella species; Hemophilus influenza. It works by stopping the growth of bacteria. It is used to treat a wide variety of bacterial infections (e.g., skin, ear, respiratory and urinary tract infections). Pseudomembranous colitis has been reported in patients receiving cephradine both orally and intravenously. Diarrhea generally starts 1 to 16 days after starting cephradine therapy. Gastrointestinal side effects have included nausea, vomiting. Hypersensitivity reactions have included rash, urticaria, pruritus, and joint pain. Bacteriostats may interfere with the bactericidal action of cephalosporins in acute infection; other agents, e.g., aminoglycosides, colistin, polymyxins, vancomycin, may increase the possibility of nephrotoxicity.
Status:
US Previously Marketed
Source:
CEFADYL by APOTHECON
(1986)
Source URL:
First approved in 1974
Source:
CEFADYL by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephapirin is a first-generation cephalosporin. Cephapirin has been indicated for the treatment of infections when caused by susceptible strains in respiratory, genitourinary, gastrointestinal, skin and soft tissue, bone and joint infections, septicemia; treatment of susceptible gram-positive bacilli and cocci (never enterococcus); some gram-negative bacilli including E. coli, Proteus, and Klebsiella may be susceptible. Cephapirin is used in veterinary as an intra-uterine antibiotic infusion for the treatment of subacute and chronic endometritis in cows and repeat breeders.
Status:
US Previously Marketed
Source:
VELOSEF by BRISTOL MYERS SQUIBB
(1982)
Source URL:
First approved in 1974
Source:
ANSPOR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephradine is a semisynthetic cephalosporin antibiotic. Cephradine is active against the following organisms in vitro: Group A beta-hemolytic streptococci; Staphylococci, including coagulase-positive, coagulase-negative, and penicillinase-producing strains; Streptococcus pneumoniae (formerly Diplococcus pneumoniae); Escherichia coli; Proteus mirabilis; Klebsiella species; Hemophilus influenza. It works by stopping the growth of bacteria. It is used to treat a wide variety of bacterial infections (e.g., skin, ear, respiratory and urinary tract infections). Pseudomembranous colitis has been reported in patients receiving cephradine both orally and intravenously. Diarrhea generally starts 1 to 16 days after starting cephradine therapy. Gastrointestinal side effects have included nausea, vomiting. Hypersensitivity reactions have included rash, urticaria, pruritus, and joint pain. Bacteriostats may interfere with the bactericidal action of cephalosporins in acute infection; other agents, e.g., aminoglycosides, colistin, polymyxins, vancomycin, may increase the possibility of nephrotoxicity.