{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2021)
Source:
NDA214096
(2021)
Source URL:
First approved in 2021
Source:
NDA214096
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tepotinib is an investigational small molecule inhibitor of the c-Met receptor tyrosine kinase. Alterations of the c-Met signaling pathway are found in various cancer types and correlate with aggressive tumor behavior and poor clinical prognosis. Tepotinib is a potent and selective c-Met inhibitor, >200-fold selective for c-Met than IRAK4, TrkA, Axl, IRAK1, and Mer. Tepotinib is currently in Phase I/II trials in liver cancer and lung cancer.
Status:
US Approved Rx
(2021)
Source:
NDA214783
(2021)
Source URL:
First approved in 2021
Source:
NDA214783
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
KD025 is an orally available, selective small molecule inhibitor of ROCK2 (Rho-associated coiled-coil kinase 2), a molecular target in multiple autoimmune, fibrotic and neurodegenerative diseases. KD025 is the only ROCK2-specific inhibitor in the clinical trials. KD025 down-regulates the IL-17 and IL-21 secretion in human PBMCs, and leads to down-regulation of STAT3 phosphorylation, IRF4, and RORγt expression in CD4+ T cells. Kadmon Pharmaceuticals initiated phase II clinical trials of KD025 for the treatment of Graft-versus-host disease; Idiopathic pulmonary fibrosis; Plaque psoriasis.
Status:
US Approved Rx
(2021)
Source:
NDA214018
(2021)
Source URL:
First approved in 2021
Source:
NDA214018
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fosdenopterin (NulibryTM) is a synthetic cyclic pyranopterin monophosphate that is being developed by Origin Biosciences (a subsidiary of BridgeBio Pharma) for the treatment of molybdenum cofactor deficiency (MoCD) type A. Patients with MoCD Type A have mutations in the MOCS1 gene leading to deficient MOCS1A/B dependent synthesis of the intermediate substrate, cPMP. Substrate replacement therapy with NULIBRY provides an exogenous source of cPMP, which is converted to molybdopterin. Molybdopterin is then converted to molybdenum cofactor, which is needed for the activation of molybdenum-dependent enzymes, including sulfite oxidase (SOX), an enzyme that reduces levels of neurotoxic sulfites. Fosdenopterin was approved by the US FDA in February 2021 for use in reducing the risk of mortality in paediatric and adult patients with MoCD type A.
Status:
US Approved Rx
(2021)
Source:
NDA214154
(2021)
Source URL:
First approved in 2021
Source:
NDA214154
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Estetrol is the natural human fetal selective estrogen receptor modulator. It is synthesized exclusively by the human fetal liver during pregnancy. Estetrol has a moderate affinity for human estrogen A receptor (ERa) and estrogen B receptor (ERb). Estetrol may be suitable as a potential drug for human use in applications such as hormone replacement therapy (vaginal atrophy, hot flushes), contraception and osteoporosis. The most common drug-related adverse events were lower abdominal pain, nausea, headache, dysmenorrhoea, breast enlargement and acne. Estetrol had been in clinical trials for the treatment of breast and prostate cancers.
Status:
US Approved Rx
(2021)
Source:
NDA215358
(2021)
Source URL:
First approved in 2021
Source:
NDA215358
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
ABL-001 (asciminib), a potent and selective allosteric tyrosine-protein kinase ABL1 inhibitor that is undergoing clinical development testing in patients with Chronic myeloid leukemia (CML) and Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia. is a tyrosine-protein kinase ABL1 inhibitor. In contrast to catalytic-site ABL1 kinase inhibitors, ABL001 binds to the myristoyl pocket of ABL1 and induces the formation of an inactive kinase conformation. ABL001 and second-generation catalytic inhibitors have similar cellular potencies but distinct patterns of resistance mutations, with genetic barcoding studies revealing pre-existing clonal populations with no shared resistance between ABL001 and the catalytic inhibitor nilotinib. ABL001 was tested on mice with a particularly aggressive type of CML. The combination of ABL001 and nilotinib led to complete disease control and eradicated CML xenograft tumors without recurrence after the cessation of treatment. ABL001 is being tested in clinical trials for treatment of CML and Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia alone and in combination with niotinib, imatinib or dasatinib.
Status:
US Approved Rx
(2021)
Source:
NDA214900
(2021)
Source URL:
First approved in 2021
Source:
NDA214900
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ibrexafungerp (BREXAFEMME®) is an orally active triterpenoid antifungal drug being developed by SCYNEXIS, Inc. for the treatment of fungal infections. The inhibition of β-1,3-D glucan synthetase by ibrexafungerp compromises the integrity of fungal cell walls. Ibrexafungerp has been recently approved for the treatment of vulvovaginal candidiasis (VVC), and it is the first novel antifungal drug class to be approved in more than 20 years. Food and Drug Administration's decision was based on positive results from two pivotal phase III studies in which oral ibrexafungerp proved both safe and effective in patients with vulvovaginal candidiasis. Development for the treatment of recurrent VVC and invasive fungal infections is ongoing.
Status:
US Approved Rx
(2021)
Source:
NDA214096
(2021)
Source URL:
First approved in 2021
Source:
NDA214096
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tepotinib is an investigational small molecule inhibitor of the c-Met receptor tyrosine kinase. Alterations of the c-Met signaling pathway are found in various cancer types and correlate with aggressive tumor behavior and poor clinical prognosis. Tepotinib is a potent and selective c-Met inhibitor, >200-fold selective for c-Met than IRAK4, TrkA, Axl, IRAK1, and Mer. Tepotinib is currently in Phase I/II trials in liver cancer and lung cancer.
Status:
US Approved Rx
(2021)
Source:
NDA214200
(2021)
Source URL:
First approved in 2021
Source:
NDA214200
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trilaciclib (Cosela™) is a small-molecule, short-acting, inhibitor of cyclin-dependent kinases (CDK) 4 and 6 developed by G1 Therapeutics for its myeloprotection and potential antitumor efficacy and safety benefits in combination with cancer chemotherapy. CDKs govern cell cycle progression, and trilaciclib induces a transient, reversible G1 cell cycle arrest of proliferating haematopoietic stem and progenitor cells in bone marrow, thus protecting them from damage during chemotherapy. In February 2021, trilaciclib received its first approval in the USA to decrease the incidence of chemotherapy-induced myelosuppression in adult patients when administered prior to a platinum/etoposide-containing regimen or topotecan-containing regimen for extensive-stage small cell lung cancer (ES-SCLC). Clinical studies in breast cancer, colorectal cancer and small cell lung cancer are underway in several countries.
Status:
US Approved Rx
(2021)
Source:
NDA214907
(2021)
Source URL:
First approved in 2021
Source:
NDA214907
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
OTL-38 (OTL-0038, Pafolacianine), a fluorescent-labelled folate receptor-α (FRα) targeted imaging agent that accumulates in vivo in tumor cells expressing FR. In 2014, the OTL-38 molecule was granted orphan drug status which can be given to the maker of a drug that treats rare conditions or diseases and offers protection from competition for a period of time. OTL-38 under the brand name Cytalux was approved by the U.S. Food and Drug Administration (FDA) on 29 November 2021, as an additional approach that can be used to identify malignant lesions and to ensure the total resection of the tumors in ovarian cancer patients. Cytalux is a fluorescent drug that targets folate receptor which may be overexpressed in ovarian cancer. Pafolacianine binds to FR-expressing cancer cells with ~1 nM affinity, internalizes via
receptor mediated endocytosis, and concentrates in FR-positive cancer tissues. Pafolacianine absorbs light in the near-infrared region within a range of 760 nm to 785 nm with peak absorption of 776 nm and emits fluorescence within a range of 790 nm to 815 nm with a peak emission of 796 nm.
Status:
US Approved Rx
(2021)
Source:
NDA212888
(2021)
Source URL:
First approved in 2021
Source:
NDA212888
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cabotegravir is an investigational drug that is being studied for the treatment and prevention of HIV infection. Cabotegravir belongs to a class (group) of HIV drugs called integrase inhibitors. Integrase inhibitors block an HIV enzyme called integrase. (An enzyme is a protein that starts or increases the speed of a chemical reaction.) By blocking integrase, integrase inhibitors prevent HIV from multiplying and can reduce the amount of HIV in the body. Cabotegravir does not require boosting with an additional drug. Two forms of cabotegravir are being studied: tablets that are taken by mouth (known as oral cabotegravir or oral CAB) and a long-acting injectable form that is injected into the muscle (known as cabotegravir LA or CAB LA; LA stands for "long-acting"). (A long-acting drug formulation works over a long period of time. Using this type of drug might mean that the drug could be taken less often, making a treatment or prevention regimen simpler to take.) Cabotegravir is in Phase-III clinical trials for HIV infections.