U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 57 results

structurally diverse
Status:
Possibly Marketed Outside US
Source:
Canada:PSORINUM
Source URL:
First approved in 1983

Class:
STRUCTURALLY DIVERSE

Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)

Bumetanide is indicated for the treatment of edema associated with congestive heart failure, hepatic and renal disease, including the nephrotic syndrome. It blocks the reabsorption of sodium and fluid from the kidney's tubules. The most frequent clinical adverse reactions considered probably or possibly related to bumetanide are muscle cramps (seen in 1.1% of treated patients), dizziness (1.1%), hypotension (0.8%), headache (0.6%), nausea (0.6%) and encephalopathy (in patients with preexisting liver disease) (0.6%). One or more of these adverse reactions have been reported in approximately 4.1% of patients treated with Bumex (bumetanide). Lithium should generally not be given with diuretics (such as Bumex (bumetanide)) because they reduce its renal clearance and add a high risk of lithium toxicity. Bumex (bumetanide) may potentiate the effect of various antihypertensive drugs, necessitating a reduction in the dosage of these drugs.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (EPIMERIC)



Etoposide (trade name Etopophos) is a semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and over winding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Etopophos (etoposide phosphate) is indicated in the management of the following neoplasms: Refractory Testicular Tumors-and for Small Cell Lung Cancer. The in vitro cytotoxicity observed for etoposide phosphate is significantly less than that seen with etoposide, which is believed due to the necessity for conversion in vivo to the active moiety, etoposide, by dephosphorylation. The mechanism of action is believed to be the same as that of etoposide.
Indapamide is an antihypertensive and a diuretic. It contains both a polar sulfamoyl chlorobenzamide moiety and a lipid- soluble methylindoline moiety. Indapamide blocks the slow component of delayed rectifier potassium current (IKs) without altering the rapid component (IKr) or the inward rectifier current. Specifically it blocks or antagonizes the action the proteins KCNQ1 and KCNE1. Indapamide is also thought to stimulate the synthesis of the vasodilatory hypotensive prostaglandin PGE2. Indapamide is used for the treatment of hypertension, alone or in combination with other antihypertensive drugs, as well as for the treatment of salt and fluid retention associated with congestive heart failure or edema from pregnancy (appropriate only in the management of edema of pathologic origin during pregnancy when clearly needed). Also used for the management of edema as a result of various causes.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ACHIRAL)



Cefuroxime is a semisynthetic, broad-spectrum, cephalosporin antibiotic. Cefuroxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefuroxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefuroxime has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infection: Enterobacter spp., Escherichia coli, Klebsiella spp., Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes. Cefuroxime is indicated for the treatment of patients with septicemia, meningitis, gonorrhea, lower respiratory tract, urinary tract, skin and skin-structure, bone and joint infections caused by susceptible strains of the designated organisms.
Status:
First approved in 1983

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefuroxime is a semisynthetic, broad-spectrum, cephalosporin antibiotic. Cefuroxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefuroxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefuroxime has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infection: Enterobacter spp., Escherichia coli, Klebsiella spp., Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes. Cefuroxime is indicated for the treatment of patients with septicemia, meningitis, gonorrhea, lower respiratory tract, urinary tract, skin and skin-structure, bone and joint infections caused by susceptible strains of the designated organisms.
Hemin (trade name Panhematin) is a protoporphyrin IX containing a ferric iron ion (heme B) with a chloride ligand, which is is indicated for the amelioration of recurrent attacks of acute intermittent porphyria temporally related to the menstrual cycle in susceptible women. Manifestations such as pain, hypertension, tachycardia, abnormal mental status and mild to progressive neurologic signs may be controlled in selected patients with this disorder. the therapy for the acute porphyrias is not curative. Heme acts to limit the hepatic and/or marrow synthesis of porphyrin. This action is likely due to the inhibition of δ-aminolevulinic acid synthetase, the enzyme which limits the rate of the porphyrin/heme biosynthetic pathway. The exact mechanism by which hematin produces symptomatic improvement in patients with acute episodes of the hepatic porphyrias has not been elucidated.
Hemin (trade name Panhematin) is a protoporphyrin IX containing a ferric iron ion (heme B) with a chloride ligand, which is is indicated for the amelioration of recurrent attacks of acute intermittent porphyria temporally related to the menstrual cycle in susceptible women. Manifestations such as pain, hypertension, tachycardia, abnormal mental status and mild to progressive neurologic signs may be controlled in selected patients with this disorder. the therapy for the acute porphyrias is not curative. Heme acts to limit the hepatic and/or marrow synthesis of porphyrin. This action is likely due to the inhibition of δ-aminolevulinic acid synthetase, the enzyme which limits the rate of the porphyrin/heme biosynthetic pathway. The exact mechanism by which hematin produces symptomatic improvement in patients with acute episodes of the hepatic porphyrias has not been elucidated.

Showing 31 - 40 of 57 results