{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
SINOGRAFIN by BRACCO
(1958)
Source URL:
First approved in 1954
Source:
CHOLOGRAFIN MEGLUMINE by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Iodipamide is used as a contrast agent for cholecystography and intravenous cholangiography. Following intravenous administration of Cholografin Meglumine, iodipamide is carried to the liver where it is rapidly secreted. The contrast medium appears in the bile within 10 to 15 minutes after injection, thus permitting visualization of the hepatic and common bile ducts, even in cholecystectomized patients. Iodipamide (Cholografin Meglumine) is indicated for intravenous cholangiography and cholecystography as follows: (a) visualization of the gallbladder and biliary ducts in the differential diagnosis of acute abdominal conditions, (b) visualization of the biliary ducts, especially in patients with symptoms after cholecystectomy, and (c) visualization of the gallbladder in patients unable to take oral contrast media or to absorb contrast media from the gastrointestinal tract. The biliary ducts are readily visualized within about 25 minutes after administration, except in patients with impaired liver function. The gallbladder begins to fill within an hour after injection; maximum filling is reached after two to two and one-half hours. Organic iodine compounds block x-rays as they pass through the body, thereby allowing body structures containing iodine to be delineated in contrast to those structures that do not contain iodine. The degree of opacity produced by these iodinated organic compounds is directly proportional to the total amount (concentration and volume) of the iodinated contrast agent in the path of the x-rays. Iodipamide's primary excretion through the hepato-biliary system and concentration in bile allows visualization of the gallbladder and biliary ducts.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.
Status:
Possibly Marketed Outside US
First approved in 1954
Source:
ANDA040301
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Barium hydroxide, Ba(OH)2, is also known as baryta. Barium hydroxide crystallizes as the octahydrate, which can be converted to the monohydrate by heating in air. The anhydrous hydroxide has only a secondary industrial importance; the monohydrate and octahydrate are used in industry on a far larger scale. Barium hydroxide, especially the monohydrate, is used to produce organic barium compounds such as additives for oil and stabilizers for plastics. In addition, barium hydroxide is used for dehydration and deacidification, especially for removing sulfuric acid from fats, oils, waxes, and glycerol.