Stereochemistry | ACHIRAL |
Molecular Formula | NO3.H4N |
Molecular Weight | 80.0434 |
Optical Activity | NONE |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
[NH4+].[O-][N+]([O-])=O
InChI
InChIKey=DVARTQFDIMZBAA-UHFFFAOYSA-O
InChI=1S/NO3.H3N/c2-1(3)4;/h;1H3/q-1;/p+1
Molecular Formula | H3N |
Molecular Weight | 17.0305 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
Molecular Formula | NO3 |
Molecular Weight | 62.0049 |
Charge | -1 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ACHIRAL |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 0 |
E/Z Centers | 0 |
Optical Activity | NONE |
Nitrate ion (NO3 −) is found naturally in the environment and is an important plant nutrient. It is present at varying concentrations in all plants and is a part of the nitrogen cycle. Nitrate probably has a role in protecting the gastrointestinal tract against a variety of gastrointestinal pathogens, as nitrous oxide and acidified nitrite have antibacterial properties. Significant bacterial reduction of nitrate to nitrite does not normally take place in the stomach, except in individuals with low gastric acidity or with gastrointestinal infections. These may include individuals using antacids, particularly those that block acid secretion. Potassium nitrate is used as mild local desensitizer in toothpastes.