U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ACHIRAL
Molecular Formula C25H48N6O8.ClH
Molecular Weight 597.145
Optical Activity NONE
Defined Stereocenters 0 / 0
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of DEFEROXAMINE HYDROCHLORIDE

SMILES

Cl.CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN

InChI

InChIKey=KCRQZLMAZHZDCL-UHFFFAOYSA-N
InChI=1S/C25H48N6O8.ClH/c1-21(32)29(37)18-9-3-6-16-27-22(33)12-14-25(36)31(39)20-10-4-7-17-28-23(34)11-13-24(35)30(38)19-8-2-5-15-26;/h37-39H,2-20,26H2,1H3,(H,27,33)(H,28,34);1H

HIDE SMILES / InChI

Molecular Formula C25H48N6O8
Molecular Weight 560.684
Charge 0
Count
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Molecular Formula ClH
Molecular Weight 36.461
Charge 0
Count
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Deferoxamine (brand name Desferal) an iron chelator, is a drug for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Deferoxamine chelates iron by forming a stable complex that prevents the iron entering into further chemical reactions. However, drug may cause hypersensitivity reactions, systemic allergic reactions, and cardiovascular, hematologic and neurological adverse reactions. Serious adverse reactions include significant hypotension and marked body weight loss. Principally plasma enzymes metabolize deferoxamine, but the pathways have not yet been defined. The chelate is readily soluble in water and passes easily through the kidney, giving the urine a characteristic reddish color. Some is also excreted in the feces via the bile.

CNS Activity

Curator's Comment: Known to be CNS penetrant in rats. Human data not available

Approval Year

Targets

Targets

Primary TargetPharmacologyConditionPotency
Target ID: CHEMBL2363058
Conditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Palliative
DESFERAL

Approved Use

Deferoxamine Mesylate for Injection, USP is indicated for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Acute Iron Intoxication Deferoxamine mesylate is an adjunct to, and not a substitute for, standard measures used in treating acute iron intoxication, which may include the following: induction of emesis with syrup of ipecac; gastric lavage; suction and maintenance of a clear airway; control of shock with intravenous fluids, blood, oxygen, and vasopressors; and correction of acidosis. Chronic Iron Overload Deferoxamine mesylate can promote iron excretion in patients with secondary iron overload from multiple transfusions (as may occur in the treatment of some chronic anemias, including thalassemia). Long-term therapy with deferoxamine mesylate slows accumulation of hepatic iron and retards or eliminates progression of hepatic fibrosis. Iron mobilization with deferoxamine mesylate is relatively poor in patients under the age of 3 years with relatively little iron overload. The drug should ordinarily not be given to such patients unless significant iron mobilization (e.g., 1 mg or more of iron per day) can be demonstrated. Deferoxamine mesylate is not indicated for the treatment of primary hemochromatosis, since phlebotomy is the method of choice for removing excess iron in this disorder.

Launch Date

1968
Palliative
DESFERAL

Approved Use

Deferoxamine Mesylate for Injection, USP is indicated for the treatment of acute iron intoxication and of chronic iron overload due to transfusion-dependent anemias. Acute Iron Intoxication Deferoxamine mesylate is an adjunct to, and not a substitute for, standard measures used in treating acute iron intoxication, which may include the following: induction of emesis with syrup of ipecac; gastric lavage; suction and maintenance of a clear airway; control of shock with intravenous fluids, blood, oxygen, and vasopressors; and correction of acidosis. Chronic Iron Overload Deferoxamine mesylate can promote iron excretion in patients with secondary iron overload from multiple transfusions (as may occur in the treatment of some chronic anemias, including thalassemia). Long-term therapy with deferoxamine mesylate slows accumulation of hepatic iron and retards or eliminates progression of hepatic fibrosis. Iron mobilization with deferoxamine mesylate is relatively poor in patients under the age of 3 years with relatively little iron overload. The drug should ordinarily not be given to such patients unless significant iron mobilization (e.g., 1 mg or more of iron per day) can be demonstrated. Deferoxamine mesylate is not indicated for the treatment of primary hemochromatosis, since phlebotomy is the method of choice for removing excess iron in this disorder.

Launch Date

1968
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
7.4 μM
10 mg/kg 1 times / day other, intravenous
dose: 10 mg/kg
route of administration: Intravenous
experiment type: OTHER
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
12.9 μM
100 mg/kg 1 times / day other, intravenous
dose: 100 mg/kg
route of administration: Intravenous
experiment type: OTHER
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
15.7 μM
10 mg/kg single, intramuscular
dose: 10 mg/kg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
2.5 μM
10 mg/kg single, intravenous
dose: 10 mg/kg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
2.7 μM
100 mg/kg 1 times / day other, intravenous
dose: 100 mg/kg
route of administration: Intravenous
experiment type: OTHER
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
6.1 μM
10 mg/kg single, intravenous
dose: 10 mg/kg
route of administration: Intravenous
experiment type: SINGLE
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
7 μM
10 mg/kg single, intramuscular
dose: 10 mg/kg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
10.1 μM
40 mg/kg single, subcutaneous
dose: 40 mg/kg
route of administration: Subcutaneous
experiment type: SINGLE
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNKNOWN
age: UNKNOWN
sex: UNKNOWN
food status: UNKNOWN
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
354 μM × h
10 mg/kg 1 times / day other, intravenous
dose: 10 mg/kg
route of administration: Intravenous
experiment type: OTHER
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
3.05 h
10 mg/kg 1 times / day other, intravenous
dose: 10 mg/kg
route of administration: Intravenous
experiment type: OTHER
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
7.59 h
40 mg/kg single, subcutaneous
dose: 40 mg/kg
route of administration: Subcutaneous
experiment type: SINGLE
co-administered:
DEFEROXAMINE plasma
Homo sapiens
population: UNKNOWN
age: UNKNOWN
sex: UNKNOWN
food status: UNKNOWN
Doses

Doses

DosePopulationAdverse events​
700 mg/kg 1 times / day single, intravenous
Studied dose
Dose: 700 mg/kg, 1 times / day
Route: intravenous
Route: single
Dose: 700 mg/kg, 1 times / day
Sources:
unhealthy, 17 years
n = 1
Health Status: unhealthy
Condition: sickle cell-beta thalassemia
Age Group: 17 years
Sex: M
Population Size: 1
Sources:
Other AEs: Renal failure...
Other AEs:
Renal failure
Sources:
135 mg/kg 1 times / day multiple, intravenous (mean)
Studied dose
Dose: 135 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 135 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
Disc. AE: Visual disturbances...
AEs leading to
discontinuation/dose reduction:
Visual disturbances
Sources:
240 mg/kg 1 times / day multiple, intravenous
Studied dose
Dose: 240 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 240 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
DLT: Lethargy, Dizziness...
Dose limiting toxicities:
Lethargy
Dizziness
Blurred vision
Leg cramps
Sources:
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
DLT: Aspiration pneumonia...
Other AEs: Hyperglycaemia, Vomiting...
Dose limiting toxicities:
Aspiration pneumonia (33.3%)
Other AEs:
Hyperglycaemia (grade 1, 16.7%)
Vomiting (grade 1, 16.7%)
Fatigue (grade 1, 16.7%)
Infection (grade 1, 16.7%)
Urinary tract infection (grade 1, 33.3%)
Blood pressure decreased (grade 1, 16.7%)
Hyponatraemia (grade 1, 16.7%)
Agitation (grade 1, 16.7%)
Convulsion (grade 1, 16.7%)
Headache (grade 1, 16.7%)
Lethargy (grade 1, 16.7%)
Delirium (grade 1, 16.7%)
Depression (grade 1, 16.7%)
Respiratory failure (grade 1, 33.3%)
Rash (grade 1, 16.7%)
Skin irritation (grade 1, 16.7%)
Deep vein thrombosis (grade 1, 16.7%)
Hypotension (grade 1, 16.7%)
Sources:
AEs

AEs

AESignificanceDosePopulation
Renal failure
700 mg/kg 1 times / day single, intravenous
Studied dose
Dose: 700 mg/kg, 1 times / day
Route: intravenous
Route: single
Dose: 700 mg/kg, 1 times / day
Sources:
unhealthy, 17 years
n = 1
Health Status: unhealthy
Condition: sickle cell-beta thalassemia
Age Group: 17 years
Sex: M
Population Size: 1
Sources:
Visual disturbances Disc. AE
135 mg/kg 1 times / day multiple, intravenous (mean)
Studied dose
Dose: 135 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 135 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
Blurred vision DLT
240 mg/kg 1 times / day multiple, intravenous
Studied dose
Dose: 240 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 240 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
Dizziness DLT
240 mg/kg 1 times / day multiple, intravenous
Studied dose
Dose: 240 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 240 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
Leg cramps DLT
240 mg/kg 1 times / day multiple, intravenous
Studied dose
Dose: 240 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 240 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
Lethargy DLT
240 mg/kg 1 times / day multiple, intravenous
Studied dose
Dose: 240 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 240 mg/kg, 1 times / day
Sources:
unhealthy, meadian age 12 years
n = 10
Health Status: unhealthy
Condition: recurrent neuroblastoma
Age Group: meadian age 12 years
Sex: M+F
Population Size: 10
Sources:
Aspiration pneumonia 33.3%
DLT
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Agitation grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Blood pressure decreased grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Convulsion grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Deep vein thrombosis grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Delirium grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Depression grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Fatigue grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Headache grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Hyperglycaemia grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Hyponatraemia grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Hypotension grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Infection grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Lethargy grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Rash grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Skin irritation grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Vomiting grade 1, 16.7%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Respiratory failure grade 1, 33.3%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Urinary tract infection grade 1, 33.3%
62 mg/kg 1 times / day multiple, intravenous
MTD
Dose: 62 mg/kg, 1 times / day
Route: intravenous
Route: multiple
Dose: 62 mg/kg, 1 times / day
Sources:
unhealthy, median age 70 years
n = 6
Health Status: unhealthy
Condition: intracerebral hemorrhage
Age Group: median age 70 years
Sex: M+F
Population Size: 6
Sources:
Overview

Overview

CYP3A4CYP2C9CYP2D6hERG



OverviewOther

Other InhibitorOther SubstrateOther Inducer




Drug as perpetrator​

Drug as perpetrator​

TargetModalityActivityMetaboliteClinical evidence
no [Activation >10 uM]
no [Activation >10 uM]
no [Activation >10 uM]
no [Activation >10 uM]
no [Activation >10 uM]
yes
yes
Sourcing

Sourcing

Vendor/AggregatorIDURL
PubMed

PubMed

TitleDatePubMed
Effect of microbial siderophores on matrix metalloproteinase-2 activity.
1999 Jan
Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin.
1999 Nov 15
Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1.
1999 Sep 3
Erythropoietin induction in Hep3B cells is not affected by inhibition of heme biosynthesis.
2000 Feb 28
Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells.
2000 Jan
Nitric oxide inhibits dioxin action for the stimulation of Cyp1a1 promoter activity.
2000 May
Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain.
2000 May
Comparison of IY81149 with omeprazole in rat reflux oesophagitis.
2000 Oct-Dec
The role of hydroxyl radical as a messenger in Cr(VI)-induced p53 activation.
2000 Sep
Hypercalcemia and human nature.
2001 Apr
Relationship of fiber surface iron and active oxygen species to expression of procollagen, PDGF-A, and TGF-beta(1) in tracheal explants exposed to amosite asbestos.
2001 Apr
A new molecular role for iron in regulation of cell cycling and differentiation of HL-60 human leukemia cells: iron is required for transcription of p21(WAF1/CIP1) in cells induced by phorbol myristate acetate.
2001 Apr
Iron status and the outcome of HIV infection: an overview.
2001 Feb
Inhibition of N-myc expression and induction of apoptosis by iron chelation in human neuroblastoma cells.
2001 Feb 1
CAS agar diffusion assay for the measurement of siderophores in biological fluids.
2001 Feb 1
Coexistence of zinc and iron augmented oxidative injuries in the nigrostriatal dopaminergic system of SD rats.
2001 Feb 1
DNA-protein crosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids.
2001 Feb 1
Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron, used for assessing chelation therapy.
2001 Feb 1
Redox-active iron mediates amyloid-beta toxicity.
2001 Feb 15
ICL670A: a new synthetic oral chelator: evaluation in hypertransfused rats with selective radioiron probes of hepatocellular and reticuloendothelial iron stores and in iron-loaded rat heart cells in culture.
2001 Feb 15
Accumulation of HIF-1alpha under the influence of nitric oxide.
2001 Feb 15
Oxidative insult in sheep red blood cells induced by T-butyl hydroperoxide: the roles of glutathione and glutathione peroxidase.
2001 Jan
Inhibition of hepatitis B virus production associated with high levels of intracellular viral DNA intermediates in iron-depleted HepG2.2.15 cells.
2001 Jan
Differential inhibitory mechanism of Fe2+ and Fe3+ on contraction of ileal longitudinal smooth muscle.
2001 Jan
Iron chelation: new therapies.
2001 Jan
Deferoxamine pharmacokinetics.
2001 Jan
Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells.
2001 Jan
Impairment of endothelial nitric oxide production by acute glucose overload.
2001 Jan
Detection of dichromate (VI)-induced DNA strand breaks and formation of paramagnetic chromium in multiple mouse organs.
2001 Jan 1
Effects of hyperoxia and iron on iron regulatory protein-1 activity and the ferritin synthesis in mouse peritoneal macrophages.
2001 Jan 12
Lipid peroxidation in rat adrenal glands after administration cadmium and role of essential metals.
2001 Jan 12
Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells.
2001 Jan 19
Magnesium deprivation decreases cellular reduced glutathione and causes oxidative neuronal death in murine cortical cultures.
2001 Jan 26
Regulation of the 75-kDa subunit of mitochondrial complex I by iron.
2001 Jul 20
Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis.
2001 Jun 22
Vanadium-induced nuclear factor of activated T cells activation through hydrogen peroxide.
2001 Jun 22
Rapid recovery with oral zinc sulphate in deferoxamine-induced presumed optic neuropathy and hearing loss.
2001 Mar
Role of the epithelium in opposing H(2)O(2)-induced modulation of acetylcholine-induced contractions in rabbit intrapulmonary bronchiole.
2001 Mar
Inhibitory effect of reactive oxygen species on angiotensin I-converting enzyme (kininase II).
2001 Mar
Fas/Fas ligand-mediated death pathway is involved in oxLDL-induced apoptosis in vascular smooth muscle cells.
2001 Mar
Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species.(1).
2001 Mar 15
Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice.
2001 Mar 16
Cytosolic xanthine oxidoreductase mediated bioactivation of ethanol to acetaldehyde and free radicals in rat breast tissue. Its potential role in alcohol-promoted mammary cancer.
2001 Mar 7
Evaluation of a new selective medium for methicillin-resistant Staphyloccocus aureus.
2001 May
The controversial role of deferiprone in the treatment of thalassemia.
2001 May
Tc-99m MDP and Ga-67 citrate scintigraphic findings in sarcoidosis with osseous involvement.
2001 May
Cellular titration of apoptosis with steady state concentrations of H(2)O(2): submicromolar levels of H(2)O(2) induce apoptosis through Fenton chemistry independent of the cellular thiol state.
2001 May 1
Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection.
2001 May 1
Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus.
2001 May 15
Induction of oxidative stress by humic acid through increasing intracellular iron: a possible mechanism leading to atherothrombotic vascular disorder in blackfoot disease.
2001 May 18
Patents

Sample Use Guides

Acute Iron Intoxication: Intramuscular Administration: This route is preferred and should be used for ALL PATIENTS NOT IN SHOCK: A dose of 1000 mg should be administered initially. This may be followed by 500 mg every 4 hours for two doses. Depending upon the clinical response, subsequent doses of 500 mg may be administered every 4-12 hours. The total amount administered should not exceed 6000 mg in 24 hours Intravenous Administration: THIS ROUTE SHOULD BE USED ONLY FOR PATIENTS IN A STATE OF CARDIOVASCULAR COLLAPSE AND THEN ONLY BY SLOW INFUSION. THE RATE OF INFUSION SHOULD NOT EXCEED 15 MG/KG/HR FOR THE FIRST 1000 MG ADMINISTERED. SUBSEQUENT IV DOSING, IF NEEDED, MUST BE AT A SLOWER RATE, NOT TO EXCEED 125 MG/HR: An initial dose of 1000 mg should be administered at a rate NOT TO EXCEED 15 mg/kg/hr. This may be followed by 500 mg over 4 hours for two doses. Depending upon the clinical response, subsequent doses of 500 mg may be administered over 4-12 hours. The total amount administered should not exceed 6000 mg in 24 hours. CHRONIC IRON OVERLOAD: SUBCUTANEOUS ADMINISTRATION: A daily dose of 1000-2000 mg (20-40 mg/kg/day) should be administered over 8-24 hours, utilizing a small portable pump capable of providing continuous mini-infusion. The duration of infusion must be individualized. In some patients, as much iron will be excreted after a short infusion of 8-12 hours as with the same dose given over 24 hours. Intravenous Administration: The standard recommended method of Desferal administration is via slow subcutaneous infusion over 8 – 12 hours. In patients with intravenous access, the daily dose of Desferal can be administered intravenously. The standard dose is 20 – 40 mg/kg/day for children and 40–50 mg/kg/day over 8 – 12 hours in adults for 5 – 7 days per week. In children, average doses should not exceed 40 mg/kg/day until growth has ceased. In adults, average doses should not exceed 60 mg/kg/day. The intravenous infusion rate should not exceed 15 mg/kg/hour. Intramuscular Administration: A daily dose of 500-1000 mg may be administered intramuscularly. The total daily dose should not exceed 1000 mg.
Route of Administration: Other
In Vitro Use Guide
Curator's Comment: It was investigated the effect of deferoxamine on mesenchymal stromal cells (MSCs). Ex vivo cultured stem cells derived from tumor and bone marrow compartment were exposed to Deferoxamine (DFO). It was revealed, that DFO had growth-arresting and apoptosis-inducing effect on tumor-associated MSCs (TAMSCs) and bone marrow MSCs (BMMSCs). DFO also influenced the expression pattern of adhesion molecule VCAM-1 on both TAMSCs and BMMSCs.
Unknown
Substance Class Chemical
Created
by admin
on Fri Dec 15 16:50:50 GMT 2023
Edited
by admin
on Fri Dec 15 16:50:50 GMT 2023
Record UNII
G9VYJ96FOJ
Record Status Validated (UNII)
Record Version
  • Download
Name Type Language
DEFEROXAMINE HYDROCHLORIDE
MI   USAN   WHO-DD  
USAN  
Official Name English
NSC-268993
Code English
DEFEROXAMINE HYDROCHLORIDE [MI]
Common Name English
Deferoxamine hydrochloride [WHO-DD]
Common Name English
DEFEROXAMINE HYDROCHLORIDE [USAN]
Common Name English
BA-29837
Code English
N-[5-{3-[(5-Aminopentyl)hydroxycarbamoyl]propionamido}pentyl]-3-{[5-(N-hydroxyacetamido)pentyl]carbamoyl}propionohydroxamic acid monohydrochloride
Systematic Name English
BUTANEDIAMIDE, N'-(5-((4-((5-(ACETYLHYDROXYAMINO)PENTYL)AMINO)-1,4-DIOXOBUTYL)HYDROXYAMINO)PENTYL)-N-(5-AMINOPENTYL)-N-HYDROXY- MONOHYDROCHLORIDE
Common Name English
DESFERRIOXAMINE HYDROCHLORIDE
Common Name English
DEFEROXAMINE HCL
Common Name English
Classification Tree Code System Code
NCI_THESAURUS C62357
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
Code System Code Type Description
NSC
268993
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
EVMPD
SUB01570MIG
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
ECHA (EC/EINECS)
217-767-4
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
SMS_ID
100000087728
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
CAS
1950-39-6
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
PUBCHEM
62880
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
ChEMBL
CHEMBL556
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
EPA CompTox
DTXSID50173157
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
MERCK INDEX
m4133
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY Merck Index
NCI_THESAURUS
C1972
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
DRUG BANK
DBSALT000965
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
FDA UNII
G9VYJ96FOJ
Created by admin on Fri Dec 15 16:50:50 GMT 2023 , Edited by admin on Fri Dec 15 16:50:50 GMT 2023
PRIMARY
Related Record Type Details
PARENT -> SALT/SOLVATE
Related Record Type Details
ACTIVE MOIETY