U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry RACEMIC
Molecular Formula C17H23NO3.ClH
Molecular Weight 325.83
Optical Activity ( + / - )
Defined Stereocenters 3 / 4
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of ATROPINE HYDROCHLORIDE

SMILES

Cl.CN1[C@H]2CC[C@@H]1C[C@@H](C2)OC(=O)C(CO)C3=CC=CC=C3

InChI

InChIKey=OJIPQOWZZMSBGY-RIMUKSHESA-N
InChI=1S/C17H23NO3.ClH/c1-18-13-7-8-14(18)10-15(9-13)21-17(20)16(11-19)12-5-3-2-4-6-12;/h2-6,13-16,19H,7-11H2,1H3;1H/t13-,14+,15+,16?;

HIDE SMILES / InChI

Molecular Formula ClH
Molecular Weight 36.461
Charge 0
Count
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Molecular Formula C17H23NO3
Molecular Weight 289.3694
Charge 0
Count
Stereochemistry MIXED
Additional Stereochemistry No
Defined Stereocenters 2 / 4
E/Z Centers 0
Optical Activity UNSPECIFIED

Description
Curator's Comment: description was created based on several sources, including https://www.ncbi.nlm.nih.gov/mesh/68001285 | http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206289s000lbl.pdf

Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters. Atropine is relatively selective for muscarinic receptors. Its potency at nicotinic receptors is much lower, and actions at non-muscarinic receptors are generally undetectable clinically. Atropine does not distinguish among the M1, M2, and M3 subgroups of muscarinic receptors.

Originator

Curator's Comment: Atropine was first obtained from the deadly nightshade (Atropa belladonna) by M. Brandes in 1819.

Approval Year

TargetsConditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Primary
Atropine sulfate

Approved Use

Atropine sulfate is indicated for temporary blockade of severe or life threatening muscarinic effects, e.g., as an antisialagogue, an antivagal agent, an antidote for organophosphorus or muscarinic mushroom poisoning, and to treat bradyasystolic cardiac arrest.

Launch Date

9.9455042E11
Primary
Atropine sulfate

Approved Use

Atropine sulfate is indicated for temporary blockade of severe or life threatening muscarinic effects, e.g., as an antisialagogue, an antivagal agent, an antidote for organophosphorus or muscarinic mushroom poisoning, and to treat bradyasystolic cardiac arrest.

Launch Date

9.9455042E11
Primary
Atropine sulfate

Approved Use

Atropine sulfate is indicated for temporary blockade of severe or life threatening muscarinic effects, e.g., as an antisialagogue, an antivagal agent, an antidote for organophosphorus or muscarinic mushroom poisoning, and to treat bradyasystolic cardiac arrest.

Launch Date

9.9455042E11
Primary
Atropine sulfate

Approved Use

Atropine sulfate is indicated for temporary blockade of severe or life threatening muscarinic effects, e.g., as an antisialagogue, an antivagal agent, an antidote for organophosphorus or muscarinic mushroom poisoning, and to treat bradyasystolic cardiac arrest.

Launch Date

9.9455042E11
Primary
Atropine sulfate

Approved Use

Atropine sulfate is indicated for temporary blockade of severe or life threatening muscarinic effects, e.g., as an antisialagogue, an antivagal agent, an antidote for organophosphorus or muscarinic mushroom poisoning, and to treat bradyasystolic cardiac arrest.

Launch Date

9.9455042E11
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
860 pg/mL
0.4 μg single, ocular
dose: 0.4 μg
route of administration: Ocular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
11.7 ng/mL
1.67 mg single, intramuscular
dose: 1.67 mg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: UNKNOWN
9.6 ng/mL
1.67 mg single, intramuscular
dose: 1.67 mg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: UNKNOWN
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
43245 pg × min/mL
0.4 μg single, ocular
dose: 0.4 μg
route of administration: Ocular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: UNHEALTHY
age: ADULT
sex: FEMALE / MALE
food status: UNKNOWN
47.6 ng × h/mL
1.67 mg single, intramuscular
dose: 1.67 mg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: UNKNOWN
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
4.1 h
1.67 mg single, intramuscular
dose: 1.67 mg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: MALE
food status: UNKNOWN
Funbound

Funbound

ValueDoseCo-administeredAnalytePopulation
82%
1.67 mg single, intramuscular
dose: 1.67 mg
route of administration: Intramuscular
experiment type: SINGLE
co-administered:
ATROPINE plasma
Homo sapiens
population: UNKNOWN
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
Doses

Doses

DosePopulationAdverse events​
0.1 mg/kg single, intravenous
Dose: 0.1 mg/kg
Route: intravenous
Route: single
Dose: 0.1 mg/kg
Sources:
unhealthy, 10 years
n = 1
Health Status: unhealthy
Age Group: 10 years
Sex: M
Population Size: 1
Sources:
Disc. AE: Kounis syndrome, Chest discomfort...
AEs leading to
discontinuation/dose reduction:
Kounis syndrome (1 patient)
Chest discomfort (1 patient)
Nausea (1 patient)
Vomiting (1 patient)
Sources:
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Other AEs: Photophobia, Reading disorder...
Other AEs:
Photophobia (70%)
Reading disorder (25.9%)
Headache (21.7%)
Hot flushes (3.3%)
Conjunctivitis (1.7%)
Blepharitis (1.7%)
Sources:
1 mg single, sublingual
Overdose
Dose: 1 mg
Route: sublingual
Route: single
Dose: 1 mg
Sources:
unhealthy
n = 1
Health Status: unhealthy
Population Size: 1
Sources:
Other AEs: Adverse event...
Other AEs:
Adverse event (severe)
Sources:
AEs

AEs

AESignificanceDosePopulation
Chest discomfort 1 patient
Disc. AE
0.1 mg/kg single, intravenous
Dose: 0.1 mg/kg
Route: intravenous
Route: single
Dose: 0.1 mg/kg
Sources:
unhealthy, 10 years
n = 1
Health Status: unhealthy
Age Group: 10 years
Sex: M
Population Size: 1
Sources:
Kounis syndrome 1 patient
Disc. AE
0.1 mg/kg single, intravenous
Dose: 0.1 mg/kg
Route: intravenous
Route: single
Dose: 0.1 mg/kg
Sources:
unhealthy, 10 years
n = 1
Health Status: unhealthy
Age Group: 10 years
Sex: M
Population Size: 1
Sources:
Nausea 1 patient
Disc. AE
0.1 mg/kg single, intravenous
Dose: 0.1 mg/kg
Route: intravenous
Route: single
Dose: 0.1 mg/kg
Sources:
unhealthy, 10 years
n = 1
Health Status: unhealthy
Age Group: 10 years
Sex: M
Population Size: 1
Sources:
Vomiting 1 patient
Disc. AE
0.1 mg/kg single, intravenous
Dose: 0.1 mg/kg
Route: intravenous
Route: single
Dose: 0.1 mg/kg
Sources:
unhealthy, 10 years
n = 1
Health Status: unhealthy
Age Group: 10 years
Sex: M
Population Size: 1
Sources:
Blepharitis 1.7%
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Conjunctivitis 1.7%
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Headache 21.7%
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Reading disorder 25.9%
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Hot flushes 3.3%
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Photophobia 70%
0.5 % 1 times / day multiple, ophthalmic
Highest studied dose
Dose: 0.5 %, 1 times / day
Route: ophthalmic
Route: multiple
Dose: 0.5 %, 1 times / day
Sources:
unhealthy, 10.3 years (range: 2.7–16.8 years)
n = 77
Health Status: unhealthy
Condition: progressive myopia
Age Group: 10.3 years (range: 2.7–16.8 years)
Sex: M+F
Population Size: 77
Sources:
Adverse event severe
1 mg single, sublingual
Overdose
Dose: 1 mg
Route: sublingual
Route: single
Dose: 1 mg
Sources:
unhealthy
n = 1
Health Status: unhealthy
Population Size: 1
Sources:
Overview

Overview

CYP3A4CYP2C9CYP2D6hERG

OverviewOther

Other InhibitorOther SubstrateOther Inducer



Drug as perpetrator​

Drug as perpetrator​

TargetModalityActivityMetaboliteClinical evidence
yes [IC50 1.2 uM]
yes [IC50 39 uM]
yes [IC50 466 uM]
PubMed

PubMed

TitleDatePubMed
Catalepsy induced by morphine or haloperidol: effects of apomorphine and anticholinergic drugs.
1976 Aug
Nicotine potentiates sulpiride-induced catalepsy in mice.
1998
The incidence of systemic side-effects following subconjunctival Mydricaine no. 1 injection.
1999 Dec
Altered baroreflex control of heart rate in bradykinin B2-receptor knockout mice.
1999 Dec
Progressive treatment of erectile dysfunction with intracorporeal injections of different combinations of vasoactive agents.
1999 Feb
TIVA with propofol and remifentanil.
1999 May
Effects of topical glucocorticoids on in vitro lactoferrin glandular secretion: comparison between human upper and lower airways.
2000 Dec
Differences in electromechanical coupling between bradykinin and the nonpeptide kinin B2 receptor agonist, FR 190997, in the circular muscle of guinea-pig colon.
2001 Feb
On the mechanisms of cholinergic control of the sinoatrial node discharge.
2001 Feb
Cardiac sympathetic overactivity and decreased baroreflex sensitivity in L-NAME hypertensive rats.
2001 Feb
Muscarinic receptor subtypes and calcium signaling in Fischer rat thyroid cells.
2001 Feb 1
Characterisation of the prejunctional inhibitory muscarinic receptor on cholinergic nerves in the rat urinary bladder.
2001 Feb 16
[Availability of antidotes in French emergency medical aid units].
2001 Feb 3
[Experiences with cycloplegic drops in German-speaking centers of pediatric ophthalmology and stabology--results of a 1999 survey].
2001 Jan
Preanaesthetic use of atropine in small animals.
2001 Jan
On the interactions between antimuscarinic atropine and NMDA receptor antagonists in anticholinesterase-treated mice.
2001 Jan
Tachykinins contribute to nerve-mediated contractions in the human esophagus.
2001 Jan
Effects of VIP and NO on the motor activity of vascularly perfused rat proximal colon.
2001 Jan
Characterization of a novel mechanism accounting for the adverse cholinergic effects of the anticancer drug irinotecan.
2001 Jan
Reversal of Haemorrhagic Shock in Rats by Tetrahydroaminoacridine.
2001 Jan
Administration of atropine in the setting of acute myocardial infarction: potentiation of the ischemic process?
2001 Jan
Effects of preemptive atropine administration on incidence of medetomidine-induced bradycardia in dogs.
2001 Jan 1
Upregulation of immunoreactive angiotensin II release and angiotensinogen mRNA expression by high-frequency preganglionic stimulation at the canine cardiac sympathetic ganglia.
2001 Jan 19
Determination of scopolamine in human serum and microdialysis samples by liquid chromatography-tandem mass spectrometry.
2001 Jan 5
Neural-epithelial cell interplay: in vitro evidence that vagal mediators increase PGE2 production by human nasal epithelial cells.
2001 Jan-Feb
Evidence of alpha-adrenoceptor-mediated chronotropic action in children.
2001 Jan-Feb
From 'captive' agonism to insurmountable antagonism: demonstrating the power of analytical pharmacology.
2001 Mar
Initiation of distension-induced descending peristaltic reflex in opossum esophagus: role of muscle contractility.
2001 Mar
Muscarinic stimulation increases basal Ca(2+) and inhibits spontaneous Ca(2+) transients in murine colonic myocytes.
2001 Mar
Patents

Sample Use Guides

Atropine as an antisialagogue or for antivagal effects: initial single dose of 0.5 mg to 1 mg; as an antidote for organophosporous or muscarinic mushroom poisoning: initial single dose of 2 mg to 3 mg, repeated every 20­-30 minutes; for bradyasystolic cardiac arrest: 1 mg dose, repeated every 3-5 minutes if asystole persists; in patients with coronary artery disease: total dose should not exceed 0.03 mg/kg to 0.04 mg/kg.
Route of Administration: Other
In Vitro Use Guide
Atropine in doses -5.44 to -4.74 log mol/L totally inhibited the contraction induced by acetylcholine and carbachol in segmental pulmonary artery specimens taken from the patients undergoing thoracic surgery.
Substance Class Chemical
Created
by admin
on Fri Dec 15 17:04:37 UTC 2023
Edited
by admin
on Fri Dec 15 17:04:37 UTC 2023
Record UNII
EUF58V826B
Record Status Validated (UNII)
Record Version
  • Download
Name Type Language
ATROPINE HYDROCHLORIDE
Common Name English
ATROPINE HYDROCHLORIDE, (±)-
Common Name English
HYOSCYAMINE HYDROCHLORIDE, (±)-
Common Name English
BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-, (3-ENDO)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, HYDROCHLORIDE (1:1)
Systematic Name English
Code System Code Type Description
DRUG BANK
DBSALT002584
Created by admin on Fri Dec 15 17:04:37 UTC 2023 , Edited by admin on Fri Dec 15 17:04:37 UTC 2023
PRIMARY
ECHA (EC/EINECS)
251-757-0
Created by admin on Fri Dec 15 17:04:37 UTC 2023 , Edited by admin on Fri Dec 15 17:04:37 UTC 2023
PRIMARY
CAS
33952-38-4
Created by admin on Fri Dec 15 17:04:37 UTC 2023 , Edited by admin on Fri Dec 15 17:04:37 UTC 2023
PRIMARY
PUBCHEM
9862125
Created by admin on Fri Dec 15 17:04:37 UTC 2023 , Edited by admin on Fri Dec 15 17:04:37 UTC 2023
PRIMARY
FDA UNII
EUF58V826B
Created by admin on Fri Dec 15 17:04:37 UTC 2023 , Edited by admin on Fri Dec 15 17:04:37 UTC 2023
PRIMARY
EPA CompTox
DTXSID10955532
Created by admin on Fri Dec 15 17:04:37 UTC 2023 , Edited by admin on Fri Dec 15 17:04:37 UTC 2023
PRIMARY
Related Record Type Details
PARENT -> SALT/SOLVATE
Related Record Type Details
ACTIVE MOIETY