U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ACHIRAL
Molecular Formula C14H22N2O.ClH
Molecular Weight 270.798
Optical Activity NONE
Defined Stereocenters 0 / 0
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of LIDOCAINE HYDROCHLORIDE ANHYDROUS

SMILES

Cl.CCN(CC)CC(=O)NC1=C(C)C=CC=C1C

InChI

InChIKey=IYBQHJMYDGVZRY-UHFFFAOYSA-N
InChI=1S/C14H22N2O.ClH/c1-5-16(6-2)10-13(17)15-14-11(3)8-7-9-12(14)4;/h7-9H,5-6,10H2,1-4H3,(H,15,17);1H

HIDE SMILES / InChI

Molecular Formula ClH
Molecular Weight 36.461
Charge 0
Count
MOL RATIO 1 MOL RATIO (average)
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Molecular Formula C14H22N2O
Molecular Weight 234.3373
Charge 0
Count
MOL RATIO 1 MOL RATIO (average)
Stereochemistry ACHIRAL
Additional Stereochemistry No
Defined Stereocenters 0 / 0
E/Z Centers 0
Optical Activity NONE

Description

Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.

CNS Activity

Originator

Approval Year

Targets

Primary TargetPharmacologyConditionPotency
240.0 µM [IC50]
10.5 µM [IC50]
2.0 µM [IC50]
29.0 µM [IC50]

Conditions

ConditionModalityTargetsHighest PhaseProduct
Primary
XYLOCAINE
Primary
VIAFLEX

Cmax

ValueDoseCo-administeredAnalytePopulation
212 ng/mL
84 mg 1 times / day steady-state, topical
LIDOCAINE plasma
Homo sapiens
231 ng/mL
84 mg 2 times / day steady-state, topical
LIDOCAINE plasma
Homo sapiens

AUC

ValueDoseCo-administeredAnalytePopulation
4100 ng × h/mL
84 mg 1 times / day steady-state, topical
LIDOCAINE plasma
Homo sapiens
4704 ng × h/mL
84 mg 2 times / day steady-state, topical
LIDOCAINE plasma
Homo sapiens

T1/2

ValueDoseCo-administeredAnalytePopulation
6.81 h
84 mg 1 times / day steady-state, topical
LIDOCAINE plasma
Homo sapiens
7.94 h
84 mg 2 times / day steady-state, topical
LIDOCAINE plasma
Homo sapiens

Overview

CYP3A4CYP2C9CYP2D6hERG


OverviewOther

Other InhibitorOther SubstrateOther Inducer





Drug as perpetrator​

Drug as victim

Tox targets

PubMed

Sample Use Guides

In Vivo Use Guide
Therapy of ventricular arrhythmias is often initiated with a single IV bolus of 1.0 to 1.5 mg/kg at a rate of 25 to 50 mg/min. of lidocaine hydrochloride injection. Following acute treatment by bolus in patients in whom arrhythmias tend to recur and who are incapable of receiving oral antiarrhythmic agents, intravenous infusion of Lidocaine Hydrochloride and 5% Dextrose Injection, USP is administered continuously at the rate of 1 to 4 mg/min (0.020 to 0.050 mg/kg/min in the average 70 kg adult). The 0.4% solution (4 mg/mL) can be given at a rate of 15 to 60 mL/hr (0.25 to 1 mL/min). The 0.8% solution (8 mg/mL) can be given at a rate of 7.5 to 30 mL/hr (0.12 to 0.5 mL/min). Precise dosage regimen is determined by patient characteristics and response.
Route of Administration: Other
In Vitro Use Guide
Cells were prepared by dissociation from T175 cell culture flasks using trypsineEDTA (0.05%), cells were kept in serum free media in the cell hotel on board the QPatch HT. These cells were sampled, washed and re-suspended in extracellular recording solution by the QPatch HT immediately before application to well site on the chip. Once in whole-cell configuration, vehicle (0.1% DMSO v/v) was applied to the cells to achieve a stable control recording (4-min total). This was followed by application of test concentrations as a single bolus addition (4-min incubation per test concentration). Lidocaine were prepared in extracellular recording solution from a 10mM(100% DMSO) stock to yield a final 10 mkM(0.1% DMSO) test concentration from which subsequent serial dilutions in extracellular solution were performed (0.3-10 mkM). Voltage protocols for the sodium channels being screened were designed to reflect the high-frequency, pathophysiological state of the channels that may be therapeutic targets (Nav1.3, Nav1.4 and Nav1.7), and the lowfrequency, physiological state of the safety target (Nav1.5). Currents were elicited from NaV1.3, NaV1.4 and NaV1.7 cell lines using a standard two-pulse voltage protocol. From a holding potential of -100 mV, a 20 ms activating step to -20 mV was applied to assess the effect of compounds on resting (closed) state block. The second activating pulse was applied following a 5-s pre-pulse to half inactivation potential (variable depending on the sodium channel studied, -65 to -75 mV) to assess block on the openinactivated state of the channel. This protocol was applied at a sweep interval of 0.067 Hz throughout the duration of the experiment.
Substance Class Chemical
Record UNII
EC2CNF7XFP
Record Status Validated (UNII)
Record Version