U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

Details

Stereochemistry ABSOLUTE
Molecular Formula C14H13N8O4S3.Na
Molecular Weight 476.489
Optical Activity UNSPECIFIED
Defined Stereocenters 2 / 2
E/Z Centers 0
Charge 0

SHOW SMILES / InChI
Structure of CEFAZOLIN SODIUM

SMILES

[Na+].[H][C@]12SCC(CSC3=NN=C(C)S3)=C(N1C(=O)[C@H]2NC(=O)CN4C=NN=N4)C([O-])=O

InChI

InChIKey=FLKYBGKDCCEQQM-WYUVZMMLSA-M
InChI=1S/C14H14N8O4S3.Na/c1-6-17-18-14(29-6)28-4-7-3-27-12-9(11(24)22(12)10(7)13(25)26)16-8(23)2-21-5-15-19-20-21;/h5,9,12H,2-4H2,1H3,(H,16,23)(H,25,26);/q;+1/p-1/t9-,12-;/m1./s1

HIDE SMILES / InChI
Cefazolin is a semisynthetic cephalosporin analog with broad-spectrum antibiotic action due to inhibition of bacterial cell wall synthesis. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, cefazolin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. Cefazolin is used to treat bacterial infections of the skin, moderately severe bacterial infections involving the lung, bone, joint, stomach, blood, and urinary tract. It is clinically effective against infections caused by staphylococci and streptococci species of Gram positive bacteria. This drug also can be used for perioperative prophylaxis.

Approval Year

Targets

Targets

Primary TargetPharmacologyConditionPotency
Conditions

Conditions

ConditionModalityTargetsHighest PhaseProduct
Curative
ANCEF

Approved Use

Cefazolin for Injection, USP is indicated in the treatment of the following infections due to susceptible organisms: Respiratory Tract Infections: due to S. penumoniae, S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Injectable benzathine penicillin is considered to be the drug of choice in treatment and prevention of streptococcal infections, including the prophylaxis of rheumatic fever. Cefazolin for Injection, USP is effective in the eradication of streptococci from the nasopharynx; however, data establishing the efficacy of cefazolin in the subsequent prevention of rheumatic fever are not available. Urinary Tract Infections: due to E. coli, P. mirabilis. Skin and Skin Structure Infections: due to S. aureus (including beta-lactamase-producing strains), S. pyogenes, and other strains of streptococci. Biliary Tract Infections: due to E. coli, various strains of streptococci, P. mirabilis and S. aureus. Bone and Joint Infections: due to S. aureus. Genital Infections: (i.e., prostatitis, epididymitis) due to E. coli, P. mirabilis. Septicemia: due to S. pneumoniae, S. aureus (including beta-lactamase-producing strains), P. mirabilis, E. coli. Endocarditis: due to S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Appropriate culture and susceptibility studies should be performed to determine susceptibility of the causative organism to cefazolin. Perioperative Prophylaxis: The prophylactic administration of Cefazolin for Injection, USP preoperatively, intraoperatively and postoperatively may reduce the incidence of certain postoperative infections in patients undergoing surgical procedures which are classified as contaminated or potentially contaminated (e.g., vaginal hysterectomy, and cholecystectomy in high-risk patients such as those older than 70 years, with acute cholecystitis, obstructive jaundice or common duct bile stones). The perioperative use of Cefazolin for Injection, USP may also be effective in surgical patients in whom infection at the operative site would present a serious risk (e.g., during open-heart surgery and prosthetic arthroplasty). The prophylactic administration of cefazolin should usually be discontinued within a 24 hour period after the surgical procedure. In surgery where the occurrence of infection may be particularly devastating (e.g., open-heart surgery and prosthetic arthroplasty), the prophylactic administration of Cefazolin for Injection, USP may be continued for 3 to 5 days following the completion of surgery. If there are signs of infection, specimens for cultures should be obtained for the identification of the causative organism so that appropriate therapy may be instituted (see DOSAGE AND ADMINISTRATION). To reduce the development of drug-resistant bacteria and maintain the effectiveness of Cefazolin for Injection, USP and other antibacterial drugs, Cefazolin for Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Launch Date

1973
Curative
ANCEF

Approved Use

Cefazolin for Injection, USP is indicated in the treatment of the following infections due to susceptible organisms: Respiratory Tract Infections: due to S. penumoniae, S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Injectable benzathine penicillin is considered to be the drug of choice in treatment and prevention of streptococcal infections, including the prophylaxis of rheumatic fever. Cefazolin for Injection, USP is effective in the eradication of streptococci from the nasopharynx; however, data establishing the efficacy of cefazolin in the subsequent prevention of rheumatic fever are not available. Urinary Tract Infections: due to E. coli, P. mirabilis. Skin and Skin Structure Infections: due to S. aureus (including beta-lactamase-producing strains), S. pyogenes, and other strains of streptococci. Biliary Tract Infections: due to E. coli, various strains of streptococci, P. mirabilis and S. aureus. Bone and Joint Infections: due to S. aureus. Genital Infections: (i.e., prostatitis, epididymitis) due to E. coli, P. mirabilis. Septicemia: due to S. pneumoniae, S. aureus (including beta-lactamase-producing strains), P. mirabilis, E. coli. Endocarditis: due to S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Appropriate culture and susceptibility studies should be performed to determine susceptibility of the causative organism to cefazolin. Perioperative Prophylaxis: The prophylactic administration of Cefazolin for Injection, USP preoperatively, intraoperatively and postoperatively may reduce the incidence of certain postoperative infections in patients undergoing surgical procedures which are classified as contaminated or potentially contaminated (e.g., vaginal hysterectomy, and cholecystectomy in high-risk patients such as those older than 70 years, with acute cholecystitis, obstructive jaundice or common duct bile stones). The perioperative use of Cefazolin for Injection, USP may also be effective in surgical patients in whom infection at the operative site would present a serious risk (e.g., during open-heart surgery and prosthetic arthroplasty). The prophylactic administration of cefazolin should usually be discontinued within a 24 hour period after the surgical procedure. In surgery where the occurrence of infection may be particularly devastating (e.g., open-heart surgery and prosthetic arthroplasty), the prophylactic administration of Cefazolin for Injection, USP may be continued for 3 to 5 days following the completion of surgery. If there are signs of infection, specimens for cultures should be obtained for the identification of the causative organism so that appropriate therapy may be instituted (see DOSAGE AND ADMINISTRATION). To reduce the development of drug-resistant bacteria and maintain the effectiveness of Cefazolin for Injection, USP and other antibacterial drugs, Cefazolin for Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Launch Date

1973
Curative
ANCEF

Approved Use

Cefazolin for Injection, USP is indicated in the treatment of the following infections due to susceptible organisms: Respiratory Tract Infections: due to S. penumoniae, S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Injectable benzathine penicillin is considered to be the drug of choice in treatment and prevention of streptococcal infections, including the prophylaxis of rheumatic fever. Cefazolin for Injection, USP is effective in the eradication of streptococci from the nasopharynx; however, data establishing the efficacy of cefazolin in the subsequent prevention of rheumatic fever are not available. Urinary Tract Infections: due to E. coli, P. mirabilis. Skin and Skin Structure Infections: due to S. aureus (including beta-lactamase-producing strains), S. pyogenes, and other strains of streptococci. Biliary Tract Infections: due to E. coli, various strains of streptococci, P. mirabilis and S. aureus. Bone and Joint Infections: due to S. aureus. Genital Infections: (i.e., prostatitis, epididymitis) due to E. coli, P. mirabilis. Septicemia: due to S. pneumoniae, S. aureus (including beta-lactamase-producing strains), P. mirabilis, E. coli. Endocarditis: due to S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Appropriate culture and susceptibility studies should be performed to determine susceptibility of the causative organism to cefazolin. Perioperative Prophylaxis: The prophylactic administration of Cefazolin for Injection, USP preoperatively, intraoperatively and postoperatively may reduce the incidence of certain postoperative infections in patients undergoing surgical procedures which are classified as contaminated or potentially contaminated (e.g., vaginal hysterectomy, and cholecystectomy in high-risk patients such as those older than 70 years, with acute cholecystitis, obstructive jaundice or common duct bile stones). The perioperative use of Cefazolin for Injection, USP may also be effective in surgical patients in whom infection at the operative site would present a serious risk (e.g., during open-heart surgery and prosthetic arthroplasty). The prophylactic administration of cefazolin should usually be discontinued within a 24 hour period after the surgical procedure. In surgery where the occurrence of infection may be particularly devastating (e.g., open-heart surgery and prosthetic arthroplasty), the prophylactic administration of Cefazolin for Injection, USP may be continued for 3 to 5 days following the completion of surgery. If there are signs of infection, specimens for cultures should be obtained for the identification of the causative organism so that appropriate therapy may be instituted (see DOSAGE AND ADMINISTRATION). To reduce the development of drug-resistant bacteria and maintain the effectiveness of Cefazolin for Injection, USP and other antibacterial drugs, Cefazolin for Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Launch Date

1973
Curative
ANCEF

Approved Use

Cefazolin for Injection, USP is indicated in the treatment of the following infections due to susceptible organisms: Respiratory Tract Infections: due to S. penumoniae, S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Injectable benzathine penicillin is considered to be the drug of choice in treatment and prevention of streptococcal infections, including the prophylaxis of rheumatic fever. Cefazolin for Injection, USP is effective in the eradication of streptococci from the nasopharynx; however, data establishing the efficacy of cefazolin in the subsequent prevention of rheumatic fever are not available. Urinary Tract Infections: due to E. coli, P. mirabilis. Skin and Skin Structure Infections: due to S. aureus (including beta-lactamase-producing strains), S. pyogenes, and other strains of streptococci. Biliary Tract Infections: due to E. coli, various strains of streptococci, P. mirabilis and S. aureus. Bone and Joint Infections: due to S. aureus. Genital Infections: (i.e., prostatitis, epididymitis) due to E. coli, P. mirabilis. Septicemia: due to S. pneumoniae, S. aureus (including beta-lactamase-producing strains), P. mirabilis, E. coli. Endocarditis: due to S. aureus (including beta-lactamase-producing strains) and S. pyogenes. Appropriate culture and susceptibility studies should be performed to determine susceptibility of the causative organism to cefazolin. Perioperative Prophylaxis: The prophylactic administration of Cefazolin for Injection, USP preoperatively, intraoperatively and postoperatively may reduce the incidence of certain postoperative infections in patients undergoing surgical procedures which are classified as contaminated or potentially contaminated (e.g., vaginal hysterectomy, and cholecystectomy in high-risk patients such as those older than 70 years, with acute cholecystitis, obstructive jaundice or common duct bile stones). The perioperative use of Cefazolin for Injection, USP may also be effective in surgical patients in whom infection at the operative site would present a serious risk (e.g., during open-heart surgery and prosthetic arthroplasty). The prophylactic administration of cefazolin should usually be discontinued within a 24 hour period after the surgical procedure. In surgery where the occurrence of infection may be particularly devastating (e.g., open-heart surgery and prosthetic arthroplasty), the prophylactic administration of Cefazolin for Injection, USP may be continued for 3 to 5 days following the completion of surgery. If there are signs of infection, specimens for cultures should be obtained for the identification of the causative organism so that appropriate therapy may be instituted (see DOSAGE AND ADMINISTRATION). To reduce the development of drug-resistant bacteria and maintain the effectiveness of Cefazolin for Injection, USP and other antibacterial drugs, Cefazolin for Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Launch Date

1973
Cmax

Cmax

ValueDoseCo-administeredAnalytePopulation
280.9 μg/mL
2 g single, intravenous
dose: 2 g
route of administration: Intravenous
experiment type: SINGLE
co-administered:
CEFAZOLIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
AUC

AUC

ValueDoseCo-administeredAnalytePopulation
509.9 μg × h/mL
2 g single, intravenous
dose: 2 g
route of administration: Intravenous
experiment type: SINGLE
co-administered:
CEFAZOLIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
T1/2

T1/2

ValueDoseCo-administeredAnalytePopulation
2.01 h
2 g single, intravenous
dose: 2 g
route of administration: Intravenous
experiment type: SINGLE
co-administered:
CEFAZOLIN plasma
Homo sapiens
population: HEALTHY
age: ADULT
sex: UNKNOWN
food status: UNKNOWN
Doses

Doses

DosePopulationAdverse events​
4 g 2 times / day multiple, intravenous
Studied dose
Dose: 4 g, 2 times / day
Route: intravenous
Route: multiple
Dose: 4 g, 2 times / day
Sources:
healthy, 21 to 35 years
n = 7
Health Status: healthy
Age Group: 21 to 35 years
Sex: M
Population Size: 7
Sources:
Disc. AE: Rash...
AEs leading to
discontinuation/dose reduction:
Rash (14.3%)
Sources:
1.5 g 8 times / day multiple, intravenous
Highest studied dose
Dose: 1.5 g, 8 times / day
Route: intravenous
Route: multiple
Dose: 1.5 g, 8 times / day
Sources:
unhealthy, 21-34 years
n = 4
Health Status: unhealthy
Condition: endocarditis
Age Group: 21-34 years
Sex: M+F
Population Size: 4
Sources:
1 g 4 times / day multiple, intravenous
Recommended
Dose: 1 g, 4 times / day
Route: intravenous
Route: multiple
Dose: 1 g, 4 times / day
Sources:
healthy, 75 years
n = 1
Health Status: healthy
Age Group: 75 years
Sex: F
Population Size: 1
Sources:
Other AEs: Pseudomembranous colitis...
Other AEs:
Pseudomembranous colitis
Sources:
1 g 3 times / day multiple, intravenous
Dose: 1 g, 3 times / day
Route: intravenous
Route: multiple
Dose: 1 g, 3 times / day
Sources:
unhealthy
n = 75
Health Status: unhealthy
Condition: closed fractures
Population Size: 75
Sources:
Other AEs: Infection...
Other AEs:
Infection (serious, 15 patients)
Sources:
AEs

AEs

AESignificanceDosePopulation
Rash 14.3%
Disc. AE
4 g 2 times / day multiple, intravenous
Studied dose
Dose: 4 g, 2 times / day
Route: intravenous
Route: multiple
Dose: 4 g, 2 times / day
Sources:
healthy, 21 to 35 years
n = 7
Health Status: healthy
Age Group: 21 to 35 years
Sex: M
Population Size: 7
Sources:
Pseudomembranous colitis
1 g 4 times / day multiple, intravenous
Recommended
Dose: 1 g, 4 times / day
Route: intravenous
Route: multiple
Dose: 1 g, 4 times / day
Sources:
healthy, 75 years
n = 1
Health Status: healthy
Age Group: 75 years
Sex: F
Population Size: 1
Sources:
Infection serious, 15 patients
1 g 3 times / day multiple, intravenous
Dose: 1 g, 3 times / day
Route: intravenous
Route: multiple
Dose: 1 g, 3 times / day
Sources:
unhealthy
n = 75
Health Status: unhealthy
Condition: closed fractures
Population Size: 75
Sources:
Overview

Overview

CYP3A4CYP2C9CYP2D6hERG

OverviewOther

Other InhibitorOther SubstrateOther Inducer



Drug as perpetrator​

Drug as perpetrator​

TargetModalityActivityMetaboliteClinical evidence
yes [Ki 1740 uM]
yes [Ki 180 uM]
yes [Ki 550 uM]
PubMed

PubMed

TitleDatePubMed
Drugs as allergens: an immunoassay for detecting IgE antibodies to cephalosporins.
1990
Comparison of in vitro antimicrobial susceptibilities of Mycobacterium avium-M. intracellulare strains from patients with acquired immunodeficiency syndrome (AIDS), patients without AIDS, and animal sources.
1990 Jul
Antibacterials for the prophylaxis and treatment of bacterial endocarditis in children.
2001
Retrospective analysis of drug-induced urticaria and angioedema: a survey of 2287 patients.
2001 Nov
Fine structural recognition specificities of IgE antibodies distinguishing amoxicilloyl and amoxicillanyl determinants in allergic subjects.
2001 Sep-Oct
Differences in neutrophil death among beta-lactam antibiotics after in vitro killing of bacteria.
2002 Jul
Effect of water content on the solid-state stability in two isomorphic clathrates of cephalosporin: cefazolin sodium pentahydrate (alpha form) and FK041 hydrate.
2002 Jun
Stability of three cephalosporin antibiotics in AutoDose Infusion System bags.
2002 May-Jun
The vitro efficacy of beta-lactam and beta-lactamase inhibitors against multidrug resistant clinical strains of Mycobacterium tuberculosis.
2004 Apr
The release of cefazolin and gentamicin from biodegradable PLA/PGA beads.
2004 Apr 1
Antitumor activity of common antibiotics against superficial bladder cancer.
2004 Mar
In situ investigation of drug diffusion in hydrogels by the refractive index method.
2004 May 15
Chemiluminescence flow-injection analysis of beta-lactam antibiotics using the luminol-permanganate reaction.
2006 Jul-Aug
Infective endocarditis with an aortic periannular abscess extending along the right coronary artery.
2006 Jun
Influence of ascorbic acid on BUN, creatinine, resistive index in canine renal ischemia-reperfusion injury.
2006 Mar
Novel purification strategy for human PON1 and inhibition of the activity by cephalosporin and aminoglikozide derived antibiotics.
2006 May
[Physical and chemical characteristics of a new cefazolin sodium hydrate crystal].
2008 Aug
Interaction of beta-lactam antibiotics with the mitochondrial carnitine/acylcarnitine transporter.
2008 Jun 17
Treatment of sinusitis with corticosteroids in combination with antibiotics in experimentally induced rhinosinusitis.
2008 May
Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury.
2009 Dec
Kinetic spectrophotometric determination of certain cephalosporins using oxidized quercetin reagent.
2009 Sep 1
Evaluating intra- and inter-examiner reproducibility in histometric measurement: one-wall intrabony periodontal defects in beagle dogs.
2010 Aug
Stability of fortified cefazolin ophthalmic solutions prepared in artificial tears containing surfactant-based versus oxidant-based preservatives.
2010 Oct
Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis.
2015 May 18
Patents

Sample Use Guides

Moderate to severe infections: 500 mg to 1 gram, every 6 to 8 hours; mild infections caused by susceptible gram-positive cocci: 250 mg to 500 mg, every 8 hours; acute, uncomplicated urinary tract infections: 1 gram, every 12 hours; Pneumococcal pneumonia: 500 mg, every 12 hours; Severe, life threatening infections (e.g., endocarditis, septicemia): 1 gram to 1.5 grams, every 6 hours
Route of Administration: Other
In Vitro Use Guide
Susceptibilities of 259 isolates of pathogenic bacteria to cefazolin were measured by broth and agar dilution procedures. Beta-hemolytic streptococci were inhibited by 0.25 mug/ml, whereas Staphylococcus aureus and alphahemolytic streptococci were inhibited by 2.0 mug/ml. Enterococci were resistant to less than 32 mug/ml. Wide variation was seen with gram-negative species. Most isolates of Klebsiella species and Proteus mirabilis were inhibited by 4.0 or 8.0 mug/ml. Escherichia coli were less susceptible, and most isolates of Pseudomonas aeruginosa, Serratia species, and Enterobacter species were resistant to 128 mug/ml.
Name Type Language
CEFAZOLIN SODIUM
EP   MART.   ORANGE BOOK   USAN   USP   VANDF   WHO-DD  
USAN  
Official Name English
ACEF
Brand Name English
ZOLICEF
Brand Name English
CEFAZOLIN SODIUM [USAN]
Common Name English
Cefazolin sodium [WHO-DD]
Common Name English
CEFAZOLIN SODIUM [VANDF]
Common Name English
46083
Code English
CEFAMEDIN
Brand Name English
CEFACIDAL
Brand Name English
Monosodium (6R,7R)-3-[[(5-methyl-1,3,4-thiadiazol-2-yl)thio]methyl]-8-oxo-7-[2-(1H-tetrazol-1-yl)acetamido]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate
Systematic Name English
CEFAZOLIN SODIUM [USP MONOGRAPH]
Common Name English
CEFAZOLIN SODIUM [MART.]
Common Name English
SK&F 41558
Code English
5-THIA-1-AZABICYCLO(4.2.0)OCT-2-ENE-2-CARBOXYLIC ACID, 3-(((5-METHYL-1,3,4-THIADIAZOL-2-YL)THIO)METHYL)-8-OXO-7-(((1H-TETRAZOL-1-YL)ACETYL)AMINO)-, MONOSODIUM SALT (6R-TRANS)-
Common Name English
CEFAZOLIN INJECTION
Brand Name English
TOTACEF
Brand Name English
CEFAZOLIN SODIUM SALT [MI]
Common Name English
NSC-291561
Code English
CEFAZOLIN SODIUM [ORANGE BOOK]
Common Name English
KEFZOL
Brand Name English
CEFAZOLIN SODIUM SALT
MI  
Common Name English
ANCEF
Brand Name English
CEFAZIL
Brand Name English
GRAMAXIN
Brand Name English
CEFAZOLIN SODIUM [JAN]
Common Name English
CEFAMEZIN
Brand Name English
CEFAZOLIN SODIUM [EP MONOGRAPH]
Common Name English
3-(((5-METHYL-1,3,4-THIADIAZOL-2-YL)THIO)METHYL)-7-(2-(1H-TETRAZOL-1-YL)ACETAMIDO)-3-CEPHEM-4-CARBOXYLATE
Common Name English
SK&F-41558
Code English
Classification Tree Code System Code
NCI_THESAURUS C357
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
Code System Code Type Description
ChEMBL
CHEMBL1435
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
NSC
291561
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
FDA UNII
P380M0454Z
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
PUBCHEM
23675322
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
DAILYMED
P380M0454Z
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
CHEBI
3483
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
EPA CompTox
DTXSID901015786
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
NCI_THESAURUS
C47968
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
ECHA (EC/EINECS)
248-278-4
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
CHEBI
474053
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
MERCK INDEX
m3188
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY Merck Index
DRUG BANK
DBSALT000310
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
SMS_ID
100000090010
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
RXCUI
203171
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY RxNorm
EVMPD
SUB01107MIG
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY
CAS
27164-46-1
Created by admin on Fri Dec 15 15:20:35 GMT 2023 , Edited by admin on Fri Dec 15 15:20:35 GMT 2023
PRIMARY