Stereochemistry | ABSOLUTE |
Molecular Formula | C24H26N2O4 |
Molecular Weight | 406.4742 |
Optical Activity | UNSPECIFIED |
Defined Stereocenters | 1 / 1 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
COC1=CC=CC=C1OCCNC[C@@H](O)COC2=CC=CC3=C2C4=C(N3)C=CC=C4
InChI
InChIKey=OGHNVEJMJSYVRP-QGZVFWFLSA-N
InChI=1S/C24H26N2O4/c1-28-21-10-4-5-11-22(21)29-14-13-25-15-17(27)16-30-23-12-6-9-20-24(23)18-7-2-3-8-19(18)26-20/h2-12,17,25-27H,13-16H2,1H3/t17-/m1/s1
(R)-carvedilol, an enantiomer of the drug carvedilol, which is used in the treatment of mild to moderate congestive heart failure. (R)-carvedilol is an alpha adrenergic receptor blocker. It was shown, that (R)-carvedilol increased sympathetic tone, presumably as a physiological reaction to the decrease in blood pressure caused by alpha-blockade. The weak clinical net effect of beta-blockade of (R, S)-carvedilol at rest might be one reason why this drug causes fewer side effects than other beta-blockers, such as a reduction of nocturnal melatonin release.
Approval Year
Targets
Primary Target | Pharmacology | Condition | Potency |
---|---|---|---|
Conditions
Condition | Modality | Targets | Highest Phase | Product |
---|---|---|---|---|
PubMed
Sample Use Guides
It was performed a randomized, double-blind, placebo-controlled, crossover study in 12 healthy male volunteers. Subjects received single oral doses of 25 mg (R,S)-carvedilol, 12.5 mg (R)/(+)-carvedilol, 12.5 mg (S)/(-)-carvedilol, and placebo at 8 AM as well as at 8 PM. Compared to placebo, (R)-carvedilol increased heart rate during exercise (+4%, P < 0.05) and recovery (+10%, P < 0.05); (S)-carvedilol decreased heart rate during exercise (-14%, P < 0.05) and recovery (-6%, P < 0.05), and systolic blood pressure during exercise (-12%, P < 0.05); (R,S)-carvedilol decreased heart rate during exercise (-11%, P < 0.05), and systolic blood pressure at rest (-7%, P < 0.05) and during exercise (-10%, P < 0.05).
Route of Administration:
Oral
The aim of this study was to clarify the mechanisms for the enhancing effect of amiodarone on R- and S-carvedilol glucuronidation. It was evaluated O-Glu formation of R- and S-carvedilol enantiomers in a reaction mixture of HLM including 0.2% bovine serum albumin (BSA). In the absence of amiodarone, glucuronidation activity of R- and S-carvedilol (final concentration of 0.2–400 μM) for 25 min was 0.026, and 0.51 pmol/min/mg protein, and that was increased by 6.15 and 1.60-fold in the presence of 50 µM amiodarone, respectively. Generally, the metabolism of S(−)- carvedilol in vitro was more rapid than that of the R(+) enantiomer.