{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
lactic acid
to a specific field?
Status:
US Previously Marketed
Source:
KAFOCIN by LILLY
(1970)
Source URL:
First approved in 1970
Source:
KAFOCIN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephaloglycin, first oral cephalosporin, was introduced in 1965, but is no longer in common use. It is an orally absorbed derivative of cephalosporin C. Cephaloglycin binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
US Previously Marketed
Source:
KAFOCIN by LILLY
(1970)
Source URL:
First approved in 1970
Source:
KAFOCIN by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cephaloglycin, first oral cephalosporin, was introduced in 1965, but is no longer in common use. It is an orally absorbed derivative of cephalosporin C. Cephaloglycin binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
US Previously Marketed
Source:
GEOPEN by ROERIG
(1970)
Source URL:
First approved in 1970
Source:
GEOPEN by ROERIG
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Conditions:
Carfecillin is a phenyl ester of the side-chain carboxyl group of carbenicillin, beta-lactam antibiotic, acting as a prodrug. Upon oral administration, is broken down in the intestinal mucosa to the active antibacterial. It is used for urinary tract infections.
Status:
US Previously Marketed
Source:
BILOPAQUE by GE HEALTHCARE
(1969)
Source URL:
First approved in 1969
Source:
BILOPAQUE by GE HEALTHCARE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Tyropanic acid and its salt sodium tyropanoate are radiocontrast agents used in cholecystography (X-ray diagnosis of gallstones). Tyropanic acid is sold under the trade names Bilopaque, Lumopaque, Tyropaque, and Bilopac. The molecule contains three heavy iodine atoms which obstruct X-rays in the same way as the calcium in bones to produce a visible image. After injection it is rapidly excreted into the bile.
Status:
US Previously Marketed
Source:
HIPPUTOPE by BRACCO
(1970)
Source URL:
First approved in 1968
Source:
HIPPURAN I 131 by MALLINCKRODT
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
IODOHIPPURIC ACID I-131 (ortho-Iodohippuric Acid I-131, [I-123]-OIH) is an iodine-containing compound used in pyelography as a radiopaque medium. Iodine-123 labelled ortho-Iodohippuric acid was used in the early 1970's as a kidney imaging agent or tracer that "lights-up" inside your body when scanned, but over the years its use has declined. [I-123]-OIH is primarily extracted by the renal tubules and has excellent pharmacokinetic properties, with a clearance only slightly less than that of p-aminohippuran, but its use has been compromised by the suboptimal imaging characteristics of the 364-keV photon of 131I and the delivery of relatively high radiation doses to kidneys and thyroid in patients with impaired renal function
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
MINTEZOL by MERCK SHARP DOHME
(1967)
Source URL:
First approved in 1967
Source:
MINTEZOL by MERCK SHARP DOHME
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Thiabendazole (TBZ, trade names Mintezol, Tresaderm, and Arbotect) was first introduced in 1962. This drug is a fungicide and parasiticide and is indicated for the treatment of: strongyloidiasis (threadworm), cutaneous larva migrans (creeping eruption), visceral larva migrans, trichinosis: relief of symptoms and fever and a reduction of eosinophilia have followed the use of this drug during the invasion stage of the disease. But usage of this drug was discontinued. The precise mode of action of thiabendazole on the parasite is unknown, but it may inhibit the helminthspecific enzyme fumarate reductase. It was shown, also that thiabendazole reversibly disassembles newly established blood vessels, marking it as vascular disrupting agent (VDA) and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapies. Was shown, that vascular disruption by TBZ results from reduced tubulin levels and hyper-active Rho signaling. In addition, was confirmed, that thiabendazole slowed tumor growth and decreased vascular density in preclinical fibrosarcoma xenografts and thus, it could lead directly to the identification of a potential new therapeutic application for an inexpensive drug that is already approved for clinical use in humans.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.
Status:
US Previously Marketed
Source:
CLOFIBRATE by USL PHARMA
(1986)
Source URL:
First approved in 1967
Source:
ATROMID-S by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Clofibrate is a fibric acid derivative used to lower cholesterol and triglyceride (fat-like substances) levels in the blood. This may help prevent medical problems caused by such substances clogging the blood vessels. However, this treatment was discontinued in 2002 due to adverse effects. Clofibrate is an agonist of the PPAR-α receptor in muscle, liver, and other tissues. This agonism ultimately leads to modification in gene expression resulting in increased beta-oxidation, decreased triglyceride secretion, increased HDL, and increased lipoprotein lipase activity. Clofibrate increased the activity of extrahepatic lipoprotein lipase (LL), thereby increasing lipoprotein triglyceride lipolysis, inhibited the synthesis, and increases the clearance of apolipoprotein B, a carrier molecule for VLDL. In addition, clofibrate was investigated as a novel therapy agent in multiple myeloma and it shown the promising results.