{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for mycophenolic root_names_stdName in Standardized Name (approximate match)
Status:
US Previously Marketed
Source:
DUZALLO by IRONWOOD PHARMS INC
(2017)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
DUZALLO by IRONWOOD PHARMS INC
(2017)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
FARYDAK by SECURA
(2015)
Source URL:
First approved in 2015
Source:
FARYDAK by SECURA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Panobinostat is an oral deacetylace (DAC) inhibitor approved on February 23, 2015 by the FDA for the treatment of multiple myeloma. The approval was accelerated based on progression-free survival, therefore confirmatory trials by the sponsor to demonstrate clinical efficacy in multiple myeloma treatment are in progress of being conducted. Panobinostat is marketed by Novartis under the brand name Farydak. Panobinostat is a deacetylase (DAC) inhibitor. DACs, also known as histone DACs (HDAC), are responsible for regulating the acetylation of about 1750 proteins in the body; their functions are involved in many biological processes including DNA replication and repair, chromatin remodelling, transcription of genes, progression of the cell-cycle, protein degradation and cytoskeletal reorganization. In multiple myeloma, there is an overexpression of DAC proteins. Panobinostat inhibits class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10) and class IV (HDAC 11) proteins. Panobinostat's antitumor activity is believed to be attributed to epigenetic modulation of gene expression and inhibition of protein metabolism. Panobinostat also exhibits cytotoxic synergy with bortezomib, a proteasome inhibitor concurrently used in treatment of multiple myeloma.
Status:
US Previously Marketed
Source:
DAKLINZA by BRISTOL-MYERS SQUIBB
(2015)
Source URL:
First approved in 2015
Source:
DAKLINZA by BRISTOL-MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Daclatasvir (BMS-790052) is a direct-acting antiviral agent against Hepatitis C Virus (HCV) used for the treatment of chronic HCV genotype 3 infection. Daclatasvir prevents RNA replication and virion assembly by binding to NS5A, a nonstructural phosphoprotein encoded by HCV. Binding to the N-terminus of the D1 domain of NS5A prevents its interaction with host cell proteins and membranes required for virion replication complex assembly.
Status:
US Previously Marketed
Source:
DUZALLO by IRONWOOD PHARMS INC
(2017)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
21 CFR 310.528(a) aphrodisiac yohimbinum
Source URL:
First approved in 2015
Source:
NADA140866
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Yohimbine is a plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of impotence. The exact mechanism for its use in impotence has not been fully elucidated. Yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and hD(2) sites, partial agonist actions at h5-HT(1A) sites. Yohimbine-mediated norepinephrine release at the level of the corporeal tissues may also be involved. In addition, beneficial effects may involve other neurotransmitters such as dopamine and serotonin and cholinergic receptors. Yohimbine has a mild anti-diuretic action, probably via stimulation of hypothalmic center and release of posterior pituitary hormone. Reportedly yohimbine exerts no significant influence on cardiac stimulation and other effects mediated by (beta)-adrenergic receptors. Its effect on blood pressure, if any, would be to lower it; however, no adequate studies are at hand to quantitate this effect in terms of Yohimbine dosage. Side effect of Yohimbine include anxiety, tremor, palpitations, diarrhea, and supine hypertension.
Status:
US Previously Marketed
Source:
XTORO by FONSECA BIOSCIENCES
(2014)
Source URL:
First approved in 2014
Source:
XTORO by FONSECA BIOSCIENCES
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Finafloxacin is a fluoroquinolone antimicrobial agent that exhibits optimum efficacy in slightly acidic environments and is a highly potent eradicator of Helicobacter pylori. Being developed to treat serious bacterial infections associated with an acidic environment, including urinary tract infections and Helicobacter pylori infections finafloxacin is approved for treatment of acute otitis externa (swimmer’s ear) caused by the bacteria Pseudomonas aeruginosa and Staphylococcus aureus. XTORO (finafloxacin otic suspension), 0.3% is supplied as a sterile, preserved, aqueous suspension. Finafloxacin is a drug with a favorable safety profile.
Status:
US Previously Marketed
Source:
ZONTIVITY by KEY THERAP
(2014)
Source URL:
First approved in 2014
Source:
ZONTIVITY by KEY THERAP
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Vorapaxar is a tricyclic himbacine-derived oral thrombin receptor antagonist that acts by reversible inhibition of the protease-activated receptor-1 (PAR-1). PAR-1 is expressed on platelets and its inhibition prevents platelets from aggregation. Vorapaxar is approved by FDA and is indicated for the reduction of recurring thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. Vorapaxar at the same time may cause bleeding complications including intracranial haemorrhage (ICH), when compared to standard therapy alone. That is why Vorapaxar is contraindicated in patients with prior stroke, transient ischemic attack and ICH.
Status:
US Previously Marketed
Source:
INGENOL MEBUTATE by PADAGIS ISRAEL
(2019)
Source URL:
First approved in 2012
Source:
PICATO by LEO LABS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ingenol is an extremely weak PKC (protein kinase C) activator, with potent anticancer activity. Ingenol derivatives have received constant and multidisciplinary attention on account of their pleiotropic pattern of biological activity. This includes activation of PKC (protein kinase C), tumor-promotion, anticancer, and anti-HIV properties, and the possibility of dissecting co-cancerogenic and clinically useful activities has been demonstrated. Certain ingenol esters show powerful anticancer activity, and a structure-activity relationship model to discriminate between their apoptotic and non-apoptotic properties has been developed.
Status:
US Previously Marketed
Source:
INGENOL MEBUTATE by PADAGIS ISRAEL
(2019)
Source URL:
First approved in 2012
Source:
PICATO by LEO LABS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ingenol is an extremely weak PKC (protein kinase C) activator, with potent anticancer activity. Ingenol derivatives have received constant and multidisciplinary attention on account of their pleiotropic pattern of biological activity. This includes activation of PKC (protein kinase C), tumor-promotion, anticancer, and anti-HIV properties, and the possibility of dissecting co-cancerogenic and clinically useful activities has been demonstrated. Certain ingenol esters show powerful anticancer activity, and a structure-activity relationship model to discriminate between their apoptotic and non-apoptotic properties has been developed.