{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m didanosine
to a specific field?
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(22)(ii) antifungal:diaper rash methylparaben
Source URL:
First approved in 1987
Source:
NDA019527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methylparaben (E number E218) is preservative in the food, cosmetic, and pharmaceutical industries. It is completely absorbed through the skin or after ingestion and and it is hydrolyzed to para-hydroxybenzoic acid, and metabolites are rapidly excreted in the urine. Methylparaben is on the FDA generally regarded as safe list.
Status:
US Previously Marketed
Source:
CESAMET by BAUSCH
(1985)
Source URL:
First approved in 1985
Source:
CESAMET by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Nabilone is a synthetic cannabinoid approved under the brand name cesamet for treatment of severe nausea and vomiting associated with cancer chemotherapy. Nabilone is an orally active which, like other cannabinoids, has complex effects on the central nervous system (CNS). It has been suggested that the antiemetic effect of nabilone is caused by interaction with the cannabinoid receptor system, i.e. the CB (1) receptor, which has been discovered in neural tissues.
Status:
US Previously Marketed
Source:
CEFOBID by PFIZER
(1995)
Source URL:
First approved in 1982
Source:
CEFOBID by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefoperazone (marketed under the name Cefobid) is a third-generation cephalosporin antibiotic. Cefoperazone has a broad spectrum of activity: Respiratory Tract Infections caused by S. pneumoniae, H. influenzae, S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes (Group A beta-hemolytic streptococci), P. aeruginosa, Klebsiella pneumoniae, E. coli, Proteus mirabilis, and Enterobacter species. Peritonitis and Other Intra-abdominal Infections caused by E. coli, P. aeruginosa, and anaerobic gram-negative bacilli (including Bacteroides fragilis). Bacterial Septicemia caused by S. pneumoniae, S. agalactiae, S. aureus, Pseudomonas aeruginosa, E. coli, Klebsiella spp., Klebsiella pneumoniae, Proteus species (indole-positive and indole-negative), Clostridium spp. and anaerobic gram-positive cocci. Infections of the Skin and Skin Structures caused by S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes, and P. aeruginosa. Pelvic Inflammatory Disease, Endometritis, and Other Infections of the Female Genital Tract caused by N. gonorrhoeae, S. epidermidis, S. agalactiae, E. coli, Clostridium spp., Bacteroides species (including Bacteroides fragilis), and anaerobic gram-positive cocci. Cefobid has no activity against Chlamydia trachomatis. Therefore, when Cefobid is used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added. Urinary Tract Infections caused by Escherichia coli and Pseudomonas aeruginosa. Cefoperazone, a third-generation cephalosporin, interferes with cell wall synthesis by binding to the penicillin-binding proteins (PBPs), thus preventing cross-linking of nascent peptidoglycan. Cefoperazone is stable to penicillinases and has a high degree of stability to many beta-lactamases produced by gram-negative bacteria. When tested in vitro, cefoperazone has demonstrated synergistic interactions with aminoglycosides against gram-negative bacilli. As with all cephalosporins, hypersensitivity manifested by skin reactions or drug fever. Reversible neutropenia may occur with prolonged administration. Diarrhea or loose stools has been reported also.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(22)(iv) antifungal:scalp or nails camphorated metacresol
Source URL:
First approved in 1982
Source:
BLA018780
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Metacresol (m-cresol or 3-methylphenol) is colorless, yellowish liquid. It is used as a bactericide for control of crown gall and olive knot on certain fruit and nut trees and ornamentals and the genetic/physiological disorder burr knot on apples. Currently, one product is registered which contains both m-cresol and xylenol. Used as disinfectant/bacteriocide/germicide for animal pathogenic bacteria (G- and G+ vegetative) in households, sickrooms, hospitals, veterinary clinics, and veterinary hospitals; on surgical instruments, diagnostic instruments/equipment and on hospital critical rubber/plastic items. Used as an insecticide and miticide on dogs for treatment of lice and fleas. It is also used for making synthetic resins; in photographic developers, explosives. Additionally, m-cresol is chemical intermediate for thymol used in cough/cold medicinals, synthetic pyrethroid insecticides, 3-methyl-6-t-butylphenol, trinitro-m-cresol for explosives, and phenolic resins; disinfectant ingredient; ore flotation agent; solvent. m-Cresol, either pure or mixed with p-cresol, is important in the production of contact herbicides. m-Cresol is also a precursor to the pyrethroid insecticides. Furthermore, many flavor and fragrance compounds, such as (-)-methanol and musk ambrette, are derived from m-cresol. Several important antioxidants including synthetic vitamin E are produced from m-cresol. m-cresol is used as a topical dental antiseptic. m-cresol is an effective antimicrobial preservative and is used at low levels (0.3%) in multi-dose peptide and protein formulations. m-cresol has been shown to cause protein aggregation.
Status:
US Previously Marketed
Source:
MAPROTILINE HYDROCHLORIDE by WATSON LABS
(1988)
Source URL:
First approved in 1980
Source:
LUDIOMIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Maprotiline is a tetracyclic antidepressant with similar pharmacological properties to tricyclic antidepressants (TCAs). Similar to TCAs, maprotiline inhibits neuronal norepinephrine reuptake, possesses some anticholinergic activity, and does not affect monoamine oxidase activity. It differs from TCAs in that it does not appear to block serotonin reuptake. Maprotiline may be used to treat depressive affective disorders, including dysthymic disorder (depressive neurosis) and major depressive disorder. Maprotiline is effective at reducing symptoms of anxiety associated with depression. The mechanism of action of maprotiline is not precisely known. It does not act primarily by stimulation of the central nervous system and is not a monoamine oxidase inhibitor. The postulated mechanism of maprotiline is that it acts primarily by potentiation of central adrenergic synapses by blocking reuptake of norepinephrine at nerve endings. This pharmacologic action is thought to be responsible for the drug’s antidepressant and anxiolytic effects. The mean time to peak is 12 hours. The half-life of elimination averages 51 hours.
Status:
US Previously Marketed
Source:
RENOVUE-DIP by BRACCO
(1978)
Source URL:
First approved in 1978
Source:
RENOVUE-DIP by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Iodamide is an ionic monomeric iodinated radiographic contrast medium. It was used in many procedures and may be given intravenously or by other routes, for example by instillation into the bladder or uterus; it has also been used for computed tomography. It is usually given as a 24 to 65% solution of the meglumine salt, or as a mixture of the sodium and meglumine salts; solutions of the sodium salt have also been used. Iodamide is no longer marketed in the US.
Status:
US Previously Marketed
Source:
MITHRACIN by PFIZER
(1970)
Source URL:
First approved in 1970
Source:
MITHRACIN by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Plicamycin (INN, also known as mithramycin; trade name Mithracin) is an antineoplastic antibiotic produced by Streptomyces plicatus. Plicamycin belongs to the group of medicines known as antineoplastics. It may be used to treat certain types of cancer. It is also used to treat hypercalcemia or hypercalciuria (too much calcium in the blood or urine) that may occur with some types of cancer. Once a medicine has been approved for marketing for a certain use, experience may show that it is also useful for other medical problems. Although this use is not included in product labeling, plicamycin is used in certain patients with the following medical condition:Paget's disease of the bone. The manufacturer discontinued plicamycin in 2000. Several different structures are currently reported in different places all with the same chromomycin core, but with different stereochemistry in the glycoside chain, a 1999 study has re-investigated the compound and proposed a revised structure. Although the exact mechanism by which Mithracin (plicamycin) causes tumor inhibition is not yet known, studies have indicated that this compound forms a complex with deoxyribonucleic acid (DNA) and inhibits cellular ribonucleic acid (RNA) and enzymic RNA synthesis. The binding of Mithracin (plicamycin) to DNA in the presence of Mg + + (or other divalent cations) is responsible for the inhibition of DNA-dependent or DNA-directed RNA synthesis. This action presumably accounts for the biological properties of Mithracin (plicamycin). Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D.
Status:
First approved in 1966
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Betahistine is an orally administered, centrally acting histamine H1 receptor agonist with partial H3 antagonistic activity. It is proposed that betahistine may reduce peripherally the asymmetric functioning of the sensory vestibular organs in addition to increasing vestibulocochlear blood flow by antagonising local H3 heteroreceptors. Betahistine acts centrally by enhancing histamine synthesis within tuberomammillary nuclei of the posterior hypothalamus and histamine release within vestibular nuclei through antagonism of H3 autoreceptors. This mechanism, together with less specific effects of betahistine on alertness regulation through cerebral H1 receptors, should promote and facilitate central vestibular compensation. Betahistine is used to treat the symptoms associated with Ménière's disease, a condition of the inner ear which causes, vertigo (dizziness), tinnitus (ringing in the ears), hearing loss.
Status:
US Previously Marketed
First approved in 1966
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Thioguanine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute nonlymphocytic leukemia. Anti-metabolites masquerade as purine or pyrimidine - which become the building blocks of DNA. They prevent these substances becoming incorporated in to DNA during the "S" phase (of the cell cycle), stopping normal development and division. Thioguanine was first synthesized and entered into clinical trial more than 30 years ago. It is a 6-thiopurine analogue of the naturally occurring purine bases hypoxanthine and guanine. Intracellular activation results in incorporation into DNA as a false purine base. An additional cytotoxic effect is related to its incorporation into RNA. Thioguanine is cross-resistant with mercaptopurine. Cytotoxicity is cell cycle phase-specific (S-phase). Thioguanine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to 6-thioguanilyic acid (TGMP), which reaches high intracellular concentrations at therapeutic doses. TGMP interferes with the synthesis of guanine nucleotides by its inhibition of purine biosynthesis by pseudofeedback inhibition of glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway of purine ribonucleotide synthesis. TGMP also inhibits the conversion of inosinic acid (IMP) to xanthylic acid (XMP) by competition for the enzyme IMP dehydrogenase. Thioguanine nucleotides are incorporated into both the DNA and the RNA by phosphodiester linkages, and some studies have shown that incorporation of such false bases contributes to the cytotoxicity of thioguanine. Its tumor inhibitory properties may be due to one or more of its effects on feedback inhibition of de novo purine synthesis; inhibition of purine nucleotide interconversions; or incorporation into the DNA and RNA. The overall result of its action is a sequential blockade of the utilization and synthesis of the purine nucleotides. Thioguanine is used for remission induction and remission consolidation treatment of acute nonlymphocytic leukemias. It is marketed under the trade name Lanvis and Tabloid among others.
Status:
US Previously Marketed
Source:
STOXIL by GLAXOSMITHKLINE
(1967)
Source URL:
First approved in 1963
Source:
DENDRID by ALCON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Idoxuridine is an antiviral agent use in keratitis caused by herpes simplex virus. As a prescription drug it comes as a 0.1% ophthalmic solution/drops (Herplex and Dendrid). The first studies of the compound for treatment of human herpes simplex started in early 1960s. Being a structural analog of thymidine idoxuridine inhibits viral DNA replication by substituting thymidine. The effect of idoxuridine results in the inability of the virus to reproduce and/or infect tissues. Idoxuridine also blocks viral thymidine kinase as its substrate analog.